People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Crapnell, Robert D.
Manchester Metropolitan University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Electrochemical Detection of Pseudomonas aeruginosa Quorum Sensing Molecule (S)-N-Butyryl Homoserine Lactone Using Molecularly Imprinted Polymerscitations
- 2024Activation of additively manufactured electrodes using methanol and ethanol solutions
- 2024Electrochemical Detection of Pseudomonas aeruginosa Quorum Sensing Molecule ( S )- N -Butyryl Homoserine Lactone Using Molecularly Imprinted Polymerscitations
- 2024Sensitive electrochemical and thermal detection of human noroviruses using molecularly imprinted polymer nanoparticles generated against a viral targetcitations
- 2023Electrochemical Sensors Based on Metal-Organic Framework and Conductive Polymer HKUST-1@PANI for High-Performance Detection of Lead Ionscitations
- 2023Flexible Label-Free Platinum and Bio-PET-Based Immunosensor for the Detection of SARS-CoV-2citations
- 2023Flexible Label-Free Platinum and Bio-PET-Based Immunosensor for the Detection of SARS-CoV-2citations
- 2023Dipstick Sensor Based on Molecularly Imprinted Polymer‐Coated Screen‐Printed Electrodes for the Single‐Shot Detection of Glucose in Urine Samples—From Fundamental Study toward Point‐of‐Care Applicationcitations
- 2020Molecularly imprinted polymer based electrochemical biosensors: overcoming the challenges of detecting vital biomarkers and speeding up diagnosiscitations
Places of action
Organizations | Location | People |
---|
article
Dipstick Sensor Based on Molecularly Imprinted Polymer‐Coated Screen‐Printed Electrodes for the Single‐Shot Detection of Glucose in Urine Samples—From Fundamental Study toward Point‐of‐Care Application
Abstract
<jats:title>Abstract</jats:title><jats:p>Glucose biosensors play an extremely important role in health care systems worldwide. Therefore, the field continues to attract significant attention leading to the development of innovative technologies. Due to their characteristics, Molecularly Imprinted Polymers (MIPs) represent a promising alternative to commercial enzymatic sensors. In this work, a low‐cost, flexible MIP‐based platform for glucose sensing by integrating MIP particles directly into screen‐printed electrodes (SPEs) is realized. The sensor design allows the detection of glucose via two different transducer principles, the so‐called “heat‐transfer method” (HTM) and electrochemical impedance spectroscopy (EIS). The sensitivity and selectivity of the sensor are demonstrated by comparing the responses obtained toward three different saccharides. Furthermore, the application potential of the MIP‐SPE sensor is demonstrated by analyzing the response in urine samples, showing a linear range of 14.38–330 µ<jats:sc>m</jats:sc> with HTM and 1.37–330 µ<jats:sc>m</jats:sc> with EIS. To bring the sensor closer to a real life application, a handheld dipstick sensor is developed, allowing the single‐shot detection of glucose in urine using EIS. This study illustrates that the simplicity of the dipstick readout coupled with the straightforward manufacturing process opens up the possibility for mass production, making this platform a very attractive alternative to commercial glucose sensors.</jats:p>