People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Carraro, Francesco
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Polymorphism and orientation control of copper-dicarboxylate metal-organic framework thin films through vapour- and liquid-phase growthcitations
- 2023Targeting telomerase utilizing zeolitic imidazole frameworks as non-viral gene delivery agents across different cancer cell typescitations
- 2023Identifying the Internal Network Structure of a New Copper Isonicotinate Thin-Film Polymorph Obtained via Chemical Vapor Depositioncitations
- 2022Combining a Genetically Engineered Oxidase with Hydrogen-Bonded Organic Frameworks (HOFs) for Highly Efficient Biocompositescitations
- 2022Self‐Assembly of Oriented Antibody‐Decorated Metal–Organic Framework Nanocrystals for Active‐Targeting Applicationscitations
- 2022Self‐Assembly of Oriented Antibody‐Decorated Metal–Organic Framework Nanocrystals for Active‐Targeting Applicationscitations
- 2021MOFs and Biomacromolecules for Biomedical Applicationscitations
- 2021Self-Assembly of Oriented Antibody-Decorated Metal–Organic Framework Nanocrystals for Active-Targeting Applicationscitations
- 2021Metal-Organic Framework-Based Enzyme Biocompositescitations
- 2020Phase dependent encapsulation and release profile of ZIF-based biocompositescitations
- 2020Continuous-Flow Synthesis of ZIF-8 Biocomposites with Tunable Particle Sizecitations
- 2018Nano-structured aluminum surfaces for dropwise condensationcitations
- 2018Aerosol Synthesis of N and N-S Doped and Crumpled Graphene Nanostructurescitations
- 2017Hybrid Organic/Inorganic Perovskite-Polymer Nanocompositescitations
- 2015Fast One-Pot Synthesis of MoS2/Crumpled Graphene p-n Nanonjunctions for Enhanced Photoelectrochemical Hydrogen Productioncitations
Places of action
Organizations | Location | People |
---|
article
Identifying the Internal Network Structure of a New Copper Isonicotinate Thin-Film Polymorph Obtained via Chemical Vapor Deposition
Abstract
<p>The preparation of thin films is often associated with the appearance of unknown polymorphs, as both the substrate and deposition method can heavily influence crystallization processes. Here, chemical vapor deposition is used to obtain thin films of a copper-isonicotinate (Cu-INA) metal–organic framework (MOF). Starting from copper-based precursor layers (copper oxide and hydroxide), a solid-vapor conversion with vaporized isonicotinic acid in either a dry or humidified atmosphere, yields a new Cu-INA MOF polymorph. It is found that the crystalline order of the precursor layer has a strong impact on the texture of Cu-INA thin films. Furthermore, a novel methodology is introduced to determine the structure of a previously unknown thin-film phase of Cu-INA. Although only a few diffraction peaks are found via synchrotron grazing incidence X-ray diffraction (GIXRD), a triclinic unit cell can be determined, and Patterson functions can be calculated. The latter reveals the position of the copper atoms within the unit cell and the alignment of the INA linkers defining the coordination network structure. This work introduces how the combination of GIXRD data with Patterson functions can be used to identify the structure of an unknown thin-film MOF polymorph.</p>