Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bol, Ageeth

  • Google
  • 7
  • 31
  • 81

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Nb Doping and Alloying of 2D WS2 by Atomic Layer Deposition for 2D Transition Metal Dichalcogenide Transistors and HER Electrocatalysts8citations
  • 2023Toolbox of Advanced Atomic Layer Deposition Processes for Tailoring Large-Area MoS2 Thin Films at 150 °C8citations
  • 2023MoS2 Synthesized by Atomic Layer Deposition as Cu Diffusion Barrier10citations
  • 2022Growth Mechanism and Film Properties of Atomic-Layer-Deposited Titanium Oxysulfide6citations
  • 2022Atomic Layer Deposition of Large-Area Polycrystalline Transition Metal Dichalcogenides from 100 °C through Control of Plasma Chemistry31citations
  • 2022Controlling transition metal atomic ordering in two-dimensional Mo1- xW xS2alloys13citations
  • 2022Effects of the Structure and Temperature on the Nature of Excitons in the Mo0.6W0.4S2Alloy5citations

Places of action

Chart of shared publication
Jin, Lun
1 / 2 shared
Ma, Tao
1 / 3 shared
Koester, Steven J.
1 / 6 shared
Schulpen, Jeff
5 / 6 shared
Li, Ruixue
1 / 2 shared
Dawley, Rebecca A.
2 / 5 shared
Lam, Cindy
1 / 1 shared
Kessels, W. M. M.
6 / 161 shared
Mattinen, Miika Juhana
4 / 37 shared
Gity, Farzan
2 / 15 shared
Jong, Arthur A. De
1 / 1 shared
Sprey, Hessel
1 / 2 shared
Mackus, Adriaan
1 / 5 shared
Maes, Jan Willem
1 / 4 shared
Deijkers, Sanne
1 / 1 shared
Basuvalingam, Saravana Balaji
1 / 4 shared
Macco, Bart
1 / 20 shared
Bracesco, Andrea E. A.
1 / 3 shared
Kasteren, Jeroen G. A. Van
1 / 1 shared
Vonk, Joris Franciscus Andreas
1 / 1 shared
Coleman, Emma
1 / 4 shared
Duffy, Ray
1 / 9 shared
Vandalon, Vincent
1 / 8 shared
Failla, Michele
1 / 4 shared
Siebbeles, Laurens D. A.
1 / 9 shared
Poonia, Deepika
1 / 4 shared
Singh, Nisha
1 / 4 shared
Maiti, Sourav
1 / 3 shared
Schall, Peter
1 / 16 shared
Kinge, Sachin
1 / 8 shared
Laan, Marco Van Der
1 / 1 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Jin, Lun
  • Ma, Tao
  • Koester, Steven J.
  • Schulpen, Jeff
  • Li, Ruixue
  • Dawley, Rebecca A.
  • Lam, Cindy
  • Kessels, W. M. M.
  • Mattinen, Miika Juhana
  • Gity, Farzan
  • Jong, Arthur A. De
  • Sprey, Hessel
  • Mackus, Adriaan
  • Maes, Jan Willem
  • Deijkers, Sanne
  • Basuvalingam, Saravana Balaji
  • Macco, Bart
  • Bracesco, Andrea E. A.
  • Kasteren, Jeroen G. A. Van
  • Vonk, Joris Franciscus Andreas
  • Coleman, Emma
  • Duffy, Ray
  • Vandalon, Vincent
  • Failla, Michele
  • Siebbeles, Laurens D. A.
  • Poonia, Deepika
  • Singh, Nisha
  • Maiti, Sourav
  • Schall, Peter
  • Kinge, Sachin
  • Laan, Marco Van Der
OrganizationsLocationPeople

article

MoS2 Synthesized by Atomic Layer Deposition as Cu Diffusion Barrier

  • Jong, Arthur A. De
  • Mattinen, Miika Juhana
  • Sprey, Hessel
  • Schulpen, Jeff
  • Mackus, Adriaan
  • Kessels, W. M. M.
  • Bol, Ageeth
  • Maes, Jan Willem
  • Deijkers, Sanne
Abstract

Miniaturization in integrated circuits requires that the Cu diffusion barriers located in interconnects between the Cu metal line and the dielectric material should scale down. Replacing the conventional TaN with a 2D transition metal dichalcogenide barrier potentially offers the opportunity to scale to 1–2 nm thick barriers. In this article, it is demonstrated that MoS2 synthesized by atomic layer deposition (ALD) can be employed as a Cu diffusion barrier. ALD offers a controlled growth process at back-end-of-line (BEOL) compatible temperatures. MoS2 films of different thicknesses (i.e., 2.2, 4.3, and 6.5 nm) are tested by time-dependent dielectric breakdown (TDDB) measurements, demonstrating that ALD-grown MoS2 can enhance dielectric lifetime by a factor up to 17 at an electric field of 7 MV cm−1. Extrapolation to lower E-fields shows that the MoS2 barriers prepared by ALD have at least an order of magnitude higher median-time-to-failure during device operation at 0.5 MV cm−1 compared with MoS2 barriers prepared by other methods. By scaling the thickness further down in future work, the ALD MoS2 films can be applied as ultrathin Cu diffusion barriers.

Topics
  • impedance spectroscopy
  • atomic layer deposition