People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ahmad, Shahab
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Strong Photocurrent from Solution‐Processed Ruddlesden–Popper 2D Perovskite–MoS<sub>2</sub> Hybrid Heterojunctionscitations
- 2019Triple-Cation-Based Perovskite Photocathodes with AZO Protective Layer for Hydrogen Production Applications.
- 2018Lead-Free Perovskite Semiconductors Based on Germanium-Tin Solid Solutions:Structural and Optoelectronic Propertiescitations
- 2018Carbon nanotube conductive additives for improved electrical and mechanical properties of flexible battery electrodescitations
- 2018Lead-Free Perovskite Semiconductors Based on Germanium-Tin Solid Solutionscitations
- 2015Strong Photocurrent from Two-Dimensional Excitons in Solution-Processed Stacked Perovskite Semiconductor Sheets
- 2015Strong Photocurrent from Two-Dimensional Excitons in Solution-Processed Stacked Perovskite Semiconductor Sheetscitations
- 2015Strong photocurrent from 2D excitons in solution-processed stacked perovskite semiconductor sheets
- 2014In situ intercalation dynamics in inorganic-organic layered perovskite thin films.
Places of action
Organizations | Location | People |
---|
article
Strong Photocurrent from Solution‐Processed Ruddlesden–Popper 2D Perovskite–MoS<sub>2</sub> Hybrid Heterojunctions
Abstract
<jats:title>Abstract</jats:title><jats:p>This study reports overall improvement in structural, morphological, and optoelectronic properties of Ruddlesden–Popper (RP) perovskites of type (BA)<jats:sub>2</jats:sub>(MA)<jats:italic><jats:sub>n</jats:sub></jats:italic><jats:sub>−1</jats:sub>Pb<jats:italic><jats:sub>n</jats:sub></jats:italic>I<jats:sub>3</jats:sub><jats:italic><jats:sub>n</jats:sub></jats:italic><jats:sub>+1</jats:sub> by forming their bulk heterojunction hybrids with few‐layer MoS<jats:sub>2</jats:sub> nanoflakes. RP perovskite–MoS<jats:sub>2</jats:sub> hybrid thin films have shown significantly improved packing and crystallinity compared to pristine perovskites. The presence of MoS<jats:sub>2</jats:sub> at RP perovskite interface has improved the quantum confinement effects and transport of photogenerated charge carriers from perovskite to MoS<jats:sub>2</jats:sub>, due to suitable conduction band of MoS<jats:sub>2</jats:sub> and more number of decay channels. The optoelectronic properties of RP perovskite–MoS<jats:sub>2</jats:sub> hybrids are studied for various MoS<jats:sub>2</jats:sub> concentrations (4.2–25.6 × 10<jats:sup>−3</jats:sup> <jats:sc>m</jats:sc>) and at optimum concentration (12.8 × 10<jats:sup>−3</jats:sup> <jats:sc>m</jats:sc>) the photodetectors (<jats:italic>n</jats:italic> = 2, 4) have shown strong, sharp, and highly stable photocurrent response. At 0.0 V bias, the RP perovskite (<jats:italic>n</jats:italic> = 4) and MoS<jats:sub>2</jats:sub> (12.8 × 10<jats:sup>−3</jats:sup> <jats:sc>m</jats:sc>) hybrid‐based photodetectors, prepared without any encapsulation, have shown strong photocurrent density of ≈9.8 µA cm<jats:sup>−2</jats:sup> under 1 sun illumination, which is ≈17 times higher compared to the pristine RP perovskites‐based photodetector (0.6 µA cm<jats:sup>−2</jats:sup>). Further transient photocurrent, performed over 200 cycles for hybrid (<jats:italic>n</jats:italic> = 4+MoS<jats:sub>2</jats:sub>) thin film photodetector under laser (λ<jats:sub>ex</jats:sub> ≈ 405 nm, ≈630 mW cm<jats:sup>−2</jats:sup>) illumination and ambient air conditions has shown highly stable photocurrent with only ≈9.6% reduction in the peak photocurrent density.</jats:p>