People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dendooven, Jolien
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024Atomic layer deposition for tuning the surface chemical composition of nickel iron phosphates for oxygen evolution reaction in alkaline electrolyzerscitations
- 2024Controlling Pt nanoparticle sintering by sub-monolayer MgO ALD thin filmscitations
- 2023Atomic layer deposition of yttrium oxide as a protective coating for lithium metal anodes
- 2023Crystalline tin disulfide by low-temperature plasma-enhanced 2 atomic layer deposition as an electrode material for Li-ion batteries 3 and CO2 electroreductioncitations
- 2023Low temperature area selective atomic layer deposition of ruthenium dioxide thin films using polymers as inhibition layerscitations
- 2023Low temperature area selective atomic layer deposition of ruthenium dioxide thin films using polymers as inhibition layerscitations
- 2023Plasma-enhanced atomic layer deposition of crystalline Ga2S3 thin filmscitations
- 2023Plasma-enhanced atomic layer deposition of crystalline Ga2S3 thin filmscitations
- 2022Titanium carboxylate molecular layer deposited hybrid films as protective coatings for lithium-ion batteriescitations
- 2022Atomic layer deposition of ternary ruthenates by combining metalorganic precursors with RuO4 as the co-reactantcitations
- 2022Shuffling Atomic Layer Deposition Gas Sequences to Modulate Bimetallic Thin Films and Nanoparticle Propertiescitations
- 2022Shuffling atomic layer deposition gas sequences to modulate bimetallic thin films and nanoparticle propertiescitations
- 2022Atomic layer deposition of ruthenium dioxide based on redox reactions between alcohols and ruthenium tetroxidecitations
- 2022Atomic layer deposition of metal phosphatescitations
- 2022Plasma-enhanced atomic layer deposition of nickel and cobalt phosphate for lithium ion batteriescitations
- 2021Influence of Alumina Addition on the Optical Properties and the Thermal Stability of Titania Thin Films and Inverse Opals Produced by Atomic Layer Deposition
- 2021In situ study of noble metal atomic layer deposition processes using grazing incidence small angle X-ray scattering
- 2021In situ XAS/SAXS study of Al2O3-coated PtGa catalysts for propane dehydrogenationcitations
- 2021Covalent graphite modification by low-temperature photocatalytic oxidation using a titanium dioxide thin film prepared by atomic layer depositioncitations
- 2020Thermal and plasma-enhanced atomic layer deposition of yttrium oxide films and the properties of water wettabilitycitations
- 2018Kinetics of Lifetime Changes in Bimetallic Nanocatalysts Revealed by Quick X-ray Absorption Spectroscopycitations
- 2018Voltage-controlled ON−OFF ferromagnetism at room temperature in a single metal oxide filmcitations
- 2018Voltage-controlled ON-OFF ferromagnetism at room temperature in a single metal oxide filmcitations
- 2017Plasma-enhanced atomic layer deposition of silver using Ag(fod)(<tex>$PEt_{3}$</tex>) and <tex>$NH_{3}$</tex>-plasmacitations
- 2017Size- and composition-controlled Pt–Sn bimetallic nanoparticles prepared by atomic layer depositioncitations
- 2016Atomic layer deposition route to tailor nanoalloys of noble and non-noble metalscitations
- 2016Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlatticescitations
- 2016Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlatticescitations
- 2016Manganese oxide films with controlled oxidation state for water splitting devices through a combination of atomic layer deposition and post-deposition annealingcitations
- 2015Atomic layer deposited second-order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitrycitations
- 2014Synchrotron based in situ characterization during atomic layer deposition
- 2012In Situ Monitoring of Atomic Layer Deposition in Nanoporous Thin Films Using Ellipsometric Porosimetrycitations
- 2011Tailoring nanoporous materials by atomic layer depositioncitations
- 2011Spacious and mechanically flexible mesoporous silica thin film composed of an open network of interlinked nanoslabscitations
Places of action
Organizations | Location | People |
---|
article
Low temperature area selective atomic layer deposition of ruthenium dioxide thin films using polymers as inhibition layers
Abstract
Area selective atomic layer deposition (AS-ALD) is an interesting bottom-up approach due to its self-aligned fabrication potential. Ruthenium dioxide (RuO2) is an important material for several applications, including microelectronics, demanding area selective processing. Herein, it is shown that ALD of RuO2 using methanol and RuO4 as reactants results in uninhibited continuous growth on SiO2, whereas there is no deposition on polymethyl methacrylate (PMMA) blanket films even up to 200 ALD cycles, resulting in around 25 nm of selective RuO2 deposition on SiO2. The excellent selectivity of the process is verified with X-ray photoelectron spectroscopy, X-ray fluorescence, and scanning transmission electron microscopy. AS-ALD is possible at deposition temperatures as low as 60 °C, with an area selective window from 60 to 120 °C. The deposition of RuO2 using other coreactants namely ethanol and isopropanol in combination with RuO4 increases the process's growth rate while maintaining selectivity. Testing different polymer thin films such as poly(ethylene terephthalate glycol), (poly(lauryl methacrylate)-co-ethylene glycol dimethacrylate), polystyrene, and Kraton reveals an important relationship between polymer structure and the applicability of such polymers as mask layers. Finally, the developed method is demonstrated by selectively depositing RuO2 on patterned SiO2/PMMA samples, followed by PMMA removal, resulting in RuO2 nanopatterns.