Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Majeed, Muhammad K.

  • Google
  • 1
  • 6
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Nitrogenized 2D Covalent Organic Framework Decorated Ni‐Rich Single Crystal Cathode to Ameliorate the Electrochemical Performance of Lithium Batteries8citations

Places of action

Chart of shared publication
Naeem, M. Shahzaib
1 / 1 shared
Wang, Yuliang
1 / 5 shared
Shen, Jun
1 / 6 shared
Rauf, Sajid
1 / 18 shared
Iqbal, Rashid
1 / 5 shared
Javed, Muhammad Sufyan
1 / 10 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Naeem, M. Shahzaib
  • Wang, Yuliang
  • Shen, Jun
  • Rauf, Sajid
  • Iqbal, Rashid
  • Javed, Muhammad Sufyan
OrganizationsLocationPeople

article

Nitrogenized 2D Covalent Organic Framework Decorated Ni‐Rich Single Crystal Cathode to Ameliorate the Electrochemical Performance of Lithium Batteries

  • Naeem, M. Shahzaib
  • Wang, Yuliang
  • Shen, Jun
  • Rauf, Sajid
  • Iqbal, Rashid
  • Majeed, Muhammad K.
  • Javed, Muhammad Sufyan
Abstract

<jats:title>Abstract</jats:title><jats:p>Organic cathode materials for lithium‐ion batteries (LIBs) have elicited interest due to their wide‐ranging structures and finely regulated molecular levels. However, designing a cathode material with a high specific capacity, high rate‐performance, and long‐cycle life remains highly challenging. Herein, a nitrogenized 2D covalent organic framework (COF) with maximal active and minimal inactive groups is described and created by utilizing a coating material for single crystal LiNi<jats:sub>0.78</jats:sub>Mn<jats:sub>0.12</jats:sub>Co<jats:sub>0.1</jats:sub>O<jats:sub>2</jats:sub> (SCNMC) cathodes for LIBs. The composite cathode delivers a high reversible capacity of 160.5 mAh g<jats:sup>−1</jats:sup> at 1 C with a retention rate of 87.5% after 200 cycles. The cycled SCNMC@COF particles show no lattice gliding and micro‐cracks, demonstrating that the SC shape may considerably reduce anisotropic micro‐strain. This efficient, repeatable, and customizable method for producing SCNMC cathodes shall hasten their commercialization. The solid framework further ensures outstanding capacity retention and rate performance. According to density functional theory calculations, optimizing the loading of redox‐active groups in a stable network structure is an efficient technique for designing a stable structure and improving the cycling life of SCNCM cathode material.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • single crystal
  • theory
  • crack
  • anisotropic
  • composite
  • density functional theory
  • Lithium