People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rauf, Sajid
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Highly Active Interfacial Sites in SFT-SnO2 Heterojunction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands: Envisioned Theoretically and Experimentallycitations
- 2024Boosting the electrochemical performance of oxygen electrodes via the formation of LSCF-BaCe 0.9–x Mo x Y 0.1 O 3–δ triple conducting composite for solid oxide fuel cells:Part IIcitations
- 2024Boosting the electrochemical performance of oxygen electrodes via the formation of LSCF-BaCe0.9–xMoxY0.1O3–δ triple conducting composite for solid oxide fuel cellscitations
- 2023Enabling high ionic conductivity in semiconductor electrolyte membrane by surface engineering and band alignment for LT-CFCscitations
- 2023Enabling high ionic conductivity in semiconductor electrolyte membrane by surface engineering and band alignment for LT-CFCscitations
- 2023Highly Active Interfacial Sites in <scp>SFT‐SnO<sub>2</sub></scp> Heterojunction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands: Envisioned Theoretically and Experimentallycitations
- 2022Demonstrating the potential of iron-doped strontium titanate electrolyte with high-performance for low temperature ceramic fuel cellscitations
- 2022Perovskite Al-SrTiO<sub>3</sub> semiconductor electrolyte with superionic conduction in ceramic fuel cellscitations
- 2022Perovskite Al-SrTiO3 semiconductor electrolyte with superionic conduction in ceramic fuel cellscitations
- 2022Improved self-consistency and oxygen reduction activity of CaFe2O4 for protonic ceramic fuel cell by porous NiO-foam supportcitations
- 2022Nitrogenized 2D Covalent Organic Framework Decorated Ni‐Rich Single Crystal Cathode to Ameliorate the Electrochemical Performance of Lithium Batteriescitations
- 2021Semiconductor Nb-Doped SrTiO3-δPerovskite Electrolyte for a Ceramic Fuel Cellcitations
- 2021Interface engineering of bi-layer semiconductor SrCoSnO3-δ-CeO2-δ heterojunction electrolyte for boosting the electrochemical performance of low-temperature ceramic fuel cellcitations
- 2021Tailoring triple charge conduction in BaCo0.2Fe0.1Ce0.2Tm0.1Zr0.3Y0.1O3−δ semiconductor electrolyte for boosting solid oxide fuel cell performancecitations
- 2021Novel Perovskite Semiconductor Based on Co/Fe-Codoped LBZY (La0.5Ba0.5Co0.2Fe0.2Zr0.3Y0.3O3-δ) as an Electrolyte in Ceramic Fuel Cellscitations
- 2021Electrochemical Properties of a Dual-Ion Semiconductor-Ionic Co0.2Zn0.8O-Sm0.20Ce0.80O2-δComposite for a High-Performance Low-Temperature Solid Oxide Fuel Cellcitations
- 2021Promoted electrocatalytic activity and ionic transport simultaneously in dual functional Ba0.5Sr0.5Fe0.8Sb0.2O3-δ-Sm0.2Ce0.8O2-δ heterostructurecitations
- 2020Semiconductor Fe-doped SrTiO3-δ perovskite electrolyte for low-temperature solid oxide fuel cell (LT-SOFC) operating below 520 °Ccitations
Places of action
Organizations | Location | People |
---|
article
Nitrogenized 2D Covalent Organic Framework Decorated Ni‐Rich Single Crystal Cathode to Ameliorate the Electrochemical Performance of Lithium Batteries
Abstract
<jats:title>Abstract</jats:title><jats:p>Organic cathode materials for lithium‐ion batteries (LIBs) have elicited interest due to their wide‐ranging structures and finely regulated molecular levels. However, designing a cathode material with a high specific capacity, high rate‐performance, and long‐cycle life remains highly challenging. Herein, a nitrogenized 2D covalent organic framework (COF) with maximal active and minimal inactive groups is described and created by utilizing a coating material for single crystal LiNi<jats:sub>0.78</jats:sub>Mn<jats:sub>0.12</jats:sub>Co<jats:sub>0.1</jats:sub>O<jats:sub>2</jats:sub> (SCNMC) cathodes for LIBs. The composite cathode delivers a high reversible capacity of 160.5 mAh g<jats:sup>−1</jats:sup> at 1 C with a retention rate of 87.5% after 200 cycles. The cycled SCNMC@COF particles show no lattice gliding and micro‐cracks, demonstrating that the SC shape may considerably reduce anisotropic micro‐strain. This efficient, repeatable, and customizable method for producing SCNMC cathodes shall hasten their commercialization. The solid framework further ensures outstanding capacity retention and rate performance. According to density functional theory calculations, optimizing the loading of redox‐active groups in a stable network structure is an efficient technique for designing a stable structure and improving the cycling life of SCNCM cathode material.</jats:p>