Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Reg, Yvonne

  • Google
  • 2
  • 31
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Laser Cutting of Metal‐Halide‐Perovskite Wafers for X‐Ray Detector Integration2citations
  • 2018Qualitätsgesicherte Prozesskettenverknüpfung zur Herstellung höchstbelastbarer intrinsischer Metall-FKV-Verbunde in 3D-Hybrid-Bauweise (Q-Pro)citations

Places of action

Chart of shared publication
Heiss, Wolfgang
1 / 221 shared
Barabash, Anastasiia
1 / 8 shared
Hussenether, Lukas
1 / 1 shared
Schmidt, Oliver
1 / 5 shared
Huerdler, Judith E.
1 / 4 shared
Deumel, Sarah
1 / 5 shared
Tedde, Sandro F.
1 / 5 shared
Chart of publication period
2022
2018

Co-Authors (by relevance)

  • Heiss, Wolfgang
  • Barabash, Anastasiia
  • Hussenether, Lukas
  • Schmidt, Oliver
  • Huerdler, Judith E.
  • Deumel, Sarah
  • Tedde, Sandro F.
OrganizationsLocationPeople

article

Laser Cutting of Metal‐Halide‐Perovskite Wafers for X‐Ray Detector Integration

  • Heiss, Wolfgang
  • Barabash, Anastasiia
  • Reg, Yvonne
  • Hussenether, Lukas
  • Schmidt, Oliver
  • Huerdler, Judith E.
  • Deumel, Sarah
  • Tedde, Sandro F.
Abstract

<jats:title>Abstract</jats:title><jats:p>To realize various applications, structuring methods of metal‐halide perovskites are of great importance. Most of the common techniques have focused on thin layers and suffer from limitations for thick layers. But thicknesses of several hundred micrometers are necessary, especially for the application field of medical X‐ray detection. In order to scale perovskite‐based X‐ray detectors from small laboratory devices to realistic product sizes, new manufacturing strategies such as laser cutting are necessary. Here the potential of structuring any configurable geometry out of thick, freestanding methylammonium lead iodide (MAPbI<jats:sub>3</jats:sub>) wafers with ultrashort pulse (USP) laser at a wavelength of 1064 nm, is shown. A small difference in the laser parameters causes a significant variation of the perovskite from material decomposition to almost no effects. With the chosen parameter set of the USP laser, the MAPbI<jats:sub>3</jats:sub> wafer can be shaped so that just slight changes in the morphology and no difference in the X‐ray performance can be seen. This method offers the possibility of scaling up perovskite X‐ray detectors in the future without significant signal loss.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • morphology
  • decomposition