People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bassani, Franck
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Study of In0,53Ga0,47As/ InP/InAlAs/InP heterostructures by TOF-SIMS and HAXPES
- 2024Plasma-enhanced atomic layer deposition of silicon nitride thin films with different substrate biasing using Diiodosilane precursorcitations
- 2023Synthesis of AlOxNy thin films using a two-step PE-ALD processcitations
- 2022Impact of Substrate Biasing During AlN Growth by PEALD on Al 2 O 3 /AlN/GaN MOS Capacitorscitations
- 2022Impact of Substrate Biasing During AlN Growth by PEALD on Al 2 O 3 /AlN/GaN MOS Capacitorscitations
- 2022200 mm-scale growth of 2D layered GaSe with preferential orientationcitations
- 2022AlGaInAs Multi-Quantum Well Lasers on Silicon-on-Insulator Photonic Integrated Circuits Based on InP-Seed-Bonding and Epitaxial Regrowthcitations
- 2020Improvement of AlN Film Quality Using Plasma Enhanced Atomic Layer Deposition with Substrate Biasingcitations
- 2020Morphology Transition of ZnO from Thin Film to Nanowires on Silicon and its Correlated Enhanced Zinc Polarity Uniformity and Piezoelectric Responsescitations
- 2020Impact of droplet composition on the nucleation rate and morphology of vapor-liquid-solid GeSn nanowirescitations
- 2018Low temperature growth and physical properties of InAs thin films grown on Si, GaAs and In 0.53 Ga 0.47 As templatecitations
Places of action
Organizations | Location | People |
---|
article
Impact of Substrate Biasing During AlN Growth by PEALD on Al 2 O 3 /AlN/GaN MOS Capacitors
Abstract
n this article, the role of the substrate biasing during the passivation of GaN with AlN deposited by plasma enhanced atomic layer deposition (PEALD) is investigated. In addition to a commonly used remote inductively‐coupled plasma source, the PEALD reactor is equipped with another power supply allowing the substrate to be biased and to adjust the ion energy impinging on the substrate surface. The presence is reported of a narrow bias window where the GaN passivation is significantly improved compared to a standard AlN film deposited without bias. It is found that the AlN film quality is enhanced and the crystallographic structure changes from a well‐ordered epitaxial relationship with the GaN substrate to textured films when applying a bias. Finally, the capacitance–voltage characteristics ( C–V ) of Al 2 O 3 /n‐GaN and Al 2 O 3 /AlN/n‐GaN metal‐oxide‐semiconductor (MOS) capacitors are also studied. It is shown that the addition of an AlN interlayer deposited with the appropriate bias is essential to positively shift the flatband voltage of the C–V characteristics while preserving high AlN/n‐GaN interface quality. Therefore, the GaN passivation with AlN deposited using substrate biasing provides a promising pathway towards the manufacturing of normally‐off MOS‐channel high electron mobility transistors.