People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Clementi, Giacomo
University of Perugia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Material strategies to enhance the performance of piezoelectric energy harvesters based on lead-free materialscitations
- 2023Material strategies to enhance the performance of piezoelectric energy harvesters based on lead-free materialscitations
- 2023Material strategies to enhance the performance of piezoelectric energy harvesters based on lead-free materialscitations
- 2022A smart battery free system for wireless condition monitoring using piezoelectric energy harvestercitations
- 2022A low-cost alternative lead-free piezoelectric LiNbO3 films for micro-energy sources
- 2022Self-Poled Heteroepitaxial Bi_(1-x) Dy_x FeO_3 Films with Promising Pyroelectric Propertiescitations
- 2022Self‐Poled Heteroepitaxial Bi(1−x)DyxFeO3 Films with Promising Pyroelectric Propertiescitations
- 2021LiNbO3 films – A low-cost alternative lead-free piezoelectric material for vibrational energy harvesterscitations
- 2021A Self-Powered and Battery-Free Vibrational Energy to Time Converter for Wireless Vibration Monitoringcitations
- 2021A Self-Powered and Battery-Free Vibrational Energy to Time Converter for Wireless Vibration Monitoringcitations
- 2021Highly coupled and low frequency vibrational energy harvester using lithium niobate on siliconcitations
- 2020LiNbO3 films : integration for piezoelectric and pyroelectric energy harvesting. ; LiNbO3 films : intégration pour la récupération de l'énergie piézoélectrique et pyroélectrique.
- 2018Piezoelectric and pyroelectric energyharvesting from lithium niobate films
- 2018Piezoelectric and pyroelectric energy harvesting from lithium niobate films
Places of action
Organizations | Location | People |
---|
article
Self‐Poled Heteroepitaxial Bi(1−x)DyxFeO3 Films with Promising Pyroelectric Properties
Abstract
International audience ; Pyroelectric materials are very promising for thermal energy harvesting applications. To date, lead-based systems are the foremost studied materials in this field. A facile and simple metal organic chemical vapor deposition route is applied for the fabrication of lead-free, high quality, epitaxial Bi(1-x)DyxFeO3 (x= 0, 0.06, 0.08,0,11) thin films deposited on conductive SrTiO3:Nb (100) single crystal substrates. The films are studied by structural, morphological, compositional, and functional characterization. The correlation between the Dy-doping amount and the dielectric properties is thoroughlyinvestigated. Unipolar polarization–electric field loops and permittivity measurements show the important impact of Dy on ferroelectric, dielectric, and pyroelectric properties. Dy doping increases considerably the dielectric response, but much more thepyroelectric coefficient, up to a concentration of 8% Dy. The films are self-poled, which is an ideal situation for pyroelectric applications. The best figure of merit for pyroelectric energy harvesting, FE is 82 J/(m3K2), showing a factor increase of 2.6 as compared to the undoped film of the sample series. It constitutes a factor 4.5 improvement as compared to previous results obtained on BiFeO3 based thin films.