People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Guerfi, Abdelbast
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Transport Properties and Local Ions Dynamics in LATP‐Based Hybrid Solid Electrolytescitations
- 2020Direct observation of lithium metal dendrites with ceramic solid electrolytecitations
- 2020Toward an All‐Ceramic Cathode–Electrolyte Interface with Low‐Temperature Pressed NASICON Li<sub>1.5</sub>Al<sub>0.5</sub>Ge<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub> Electrolytecitations
- 2020Toward an All-Ceramic Cathode-Electrolyte Interface with Low-Temperature Pressed NASICON Li1.5Al0.5Ge1.5(PO4)3 Electrolytecitations
- 2020Electrospun Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> Nanofibers to Develop Solid-State Electrolytes for Lithium Metal Batteries
- 2016Chemically fabricated LiFePO4 thin film electrode for transparent batteries and electrochromic devicescitations
- 2016Plastic electrochromic devices based on viologen-modified TiO2 films prepared at low temperaturecitations
- 2016Li4Ti5O12 and LiMn2O4 thin-film electrodes on transparent conducting oxides for all-solid-state and electrochromic applicationscitations
Places of action
Organizations | Location | People |
---|
article
Toward an All‐Ceramic Cathode–Electrolyte Interface with Low‐Temperature Pressed NASICON Li<sub>1.5</sub>Al<sub>0.5</sub>Ge<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub> Electrolyte
Abstract
<jats:title>Abstract</jats:title><jats:p>This work shows, for the first time, the critical influence of pressure during the hot sintering stage on the ionic conductivity of the lithium super ionic conductor Li<jats:sub>1.5</jats:sub>Al<jats:sub>0.5</jats:sub>Ge<jats:sub>1.5</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub>. A hot press method is developed to obtain high ionic conductivities at the significantly decreased densification temperature of only 650 °C by applying pressure (56 MPa). Considering the possible initiation of undesirable decomposition reactions when cathode materials are annealed at high temperature (typically ≥700 °C), the use of high pressure at 650 °C can significantly limit the formation of degradation by‐products. This study determines the criteria required to optimize the pressure and temperature parameters for enhancing the total ionic conductivity. Finally, this study reports an all solid‐state battery based on a LiFePO<jats:sub>4</jats:sub> olivine cathode prepared at 650 °C showing very good Li‐intercalation/deintercalation performance. Good ionic interfacial contact is achieved without using polymer and liquid electrolyte.</jats:p>