Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rumpel, Matthias

  • Google
  • 6
  • 25
  • 59

University of Twente

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Development of Components for Solid-State Batteries and their Characterization ; Entwicklung von Komponenten für Festkörperbatterien und deren Charakterisierungcitations
  • 2022Thermal stabilities of Mn-based active materials in combination with the ceramic electrolyte LATP for ASSB bulk cathodes6citations
  • 2022Impact of the sintering additive Li3PO4 on the sintering behaviour, microstructure and electrical properties of a ceramic LATP electrolyte16citations
  • 2021How interdiffusion affects the electrochemical performance of LiMn2O4 thin films on stainless steel4citations
  • 2021How interdiffusion affects the electrochemical performance of LiMn 2 O 4 thin films on stainless steel4citations
  • 2020Toward an All‐Ceramic Cathode–Electrolyte Interface with Low‐Temperature Pressed NASICON Li<sub>1.5</sub>Al<sub>0.5</sub>Ge<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub> Electrolyte29citations

Places of action

Chart of shared publication
Appold, Lavinia
2 / 2 shared
Stracke, Werner
2 / 3 shared
Nagler, Felix
1 / 1 shared
Sextl, Gerhard
2 / 12 shared
Clemens, Oliver
1 / 24 shared
Flegler, Andreas
4 / 4 shared
Baber, Jens
1 / 2 shared
Giffin, Guinevere A.
2 / 4 shared
Romanyuk, Yaroslav E.
2 / 39 shared
Sastre, Jordi
2 / 12 shared
Chen, Xubin
2 / 4 shared
Ziegler, Simon
2 / 3 shared
Machhaus, Michael
2 / 2 shared
Delaporte, Nicolas
1 / 3 shared
Paolella, Andrea
1 / 8 shared
Guerfi, Abdelbast
1 / 8 shared
Demopoulos, George P.
1 / 4 shared
Demers, Hendrix
1 / 3 shared
Zhu, Wen
1 / 2 shared
Zaghib, Karim
1 / 10 shared
Bertoni, Giovanni
1 / 11 shared
Girard, Gabriel
1 / 5 shared
Lorrmann, Henning
1 / 5 shared
Savoie, Sylvio
1 / 4 shared
Perea, Alexis
1 / 3 shared
Chart of publication period
2024
2022
2021
2020

Co-Authors (by relevance)

  • Appold, Lavinia
  • Stracke, Werner
  • Nagler, Felix
  • Sextl, Gerhard
  • Clemens, Oliver
  • Flegler, Andreas
  • Baber, Jens
  • Giffin, Guinevere A.
  • Romanyuk, Yaroslav E.
  • Sastre, Jordi
  • Chen, Xubin
  • Ziegler, Simon
  • Machhaus, Michael
  • Delaporte, Nicolas
  • Paolella, Andrea
  • Guerfi, Abdelbast
  • Demopoulos, George P.
  • Demers, Hendrix
  • Zhu, Wen
  • Zaghib, Karim
  • Bertoni, Giovanni
  • Girard, Gabriel
  • Lorrmann, Henning
  • Savoie, Sylvio
  • Perea, Alexis
OrganizationsLocationPeople

article

Toward an All‐Ceramic Cathode–Electrolyte Interface with Low‐Temperature Pressed NASICON Li<sub>1.5</sub>Al<sub>0.5</sub>Ge<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub> Electrolyte

  • Delaporte, Nicolas
  • Paolella, Andrea
  • Guerfi, Abdelbast
  • Demopoulos, George P.
  • Demers, Hendrix
  • Zhu, Wen
  • Zaghib, Karim
  • Rumpel, Matthias
  • Bertoni, Giovanni
  • Girard, Gabriel
  • Lorrmann, Henning
  • Savoie, Sylvio
  • Perea, Alexis
Abstract

<jats:title>Abstract</jats:title><jats:p>This work shows, for the first time, the critical influence of pressure during the hot sintering stage on the ionic conductivity of the lithium super ionic conductor Li<jats:sub>1.5</jats:sub>Al<jats:sub>0.5</jats:sub>Ge<jats:sub>1.5</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub>. A hot press method is developed to obtain high ionic conductivities at the significantly decreased densification temperature of only 650 °C by applying pressure (56 MPa). Considering the possible initiation of undesirable decomposition reactions when cathode materials are annealed at high temperature (typically ≥700 °C), the use of high pressure at 650 °C can significantly limit the formation of degradation by‐products. This study determines the criteria required to optimize the pressure and temperature parameters for enhancing the total ionic conductivity. Finally, this study reports an all solid‐state battery based on a LiFePO<jats:sub>4</jats:sub> olivine cathode prepared at 650 °C showing very good Li‐intercalation/deintercalation performance. Good ionic interfacial contact is achieved without using polymer and liquid electrolyte.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • Lithium
  • ceramic
  • interfacial
  • decomposition
  • sintering
  • densification