People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rijnders, Guus
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Enhanced Piezoelectricity by Polarization Rotation through Thermal Strain Manipulation in PbZr<sub>0.6</sub>Ti<sub>0.4</sub>O<sub>3</sub> Thin Films
- 2024The effect of intrinsic magnetic order on electrochemical water splittingcitations
- 2024Stabilizing Perovskite Pb(Mg<sub>0.33</sub>Nb<sub>0.67</sub>)O<sub>3</sub>-PbTiO<sub>3</sub> Thin Films by Fast Deposition and Tensile Mismatched Growth Templatecitations
- 2023On the importance of the SrTiO3 template and the electronic contact layer for the integration of phase-pure low hysteretic Pb(Mg0.33Nb0.67)O3-PbTiO3 layers with Sicitations
- 2021Growth and crystallization of sio2/geo2 thin films on si(100) substratescitations
- 2021Growth and crystallization of sio 2 /geo 2 thin films on si(100) substratescitations
- 2020Single-Source, Solvent-Free, Room Temperature Deposition of Black γ-CsSnI 3 Filmscitations
- 2020Origins of infrared transparency in highly conductive perovskite stannate BaSnO3citations
- 2020Single‐Source, Solvent‐Free, Room Temperature Deposition of Black γ‐CsSnI3 Filmscitations
- 2020Epitaxial growth of full range of compositions of (1 1 1) PbZr1- xTixO3 on GaNcitations
- 2017Tuning of large piezoelectric response in nanosheet-buffered lead zirconate titanate films on glass substratescitations
- 2017One step toward a new generation of C-MOS compatible oxide PN junctionscitations
- 2016Long-range domain structure and symmetry engineering by interfacial oxygen octahedral coupling at heterostructure interfacecitations
- 2016A flexoelectric microelectromechanical system on siliconcitations
- 2015Epitaxy on Demandcitations
- 2014Patterning of Epitaxial Perovskites from Micro and Nano Molded Stencil Maskscitations
- 2012High-Temperature Magnetic Insulating Phase in Ultrathin La0.67Sr0.33MnO3 Filmscitations
- 2011Metallic and Insulating Interfaces of Amorphous SrTiO3-Based Oxide Heterostructurescitations
- 2009Low-temperature solution synthesis of chemically functional ferromagnetic FePtAu nanoparticlescitations
- 2007Magnetic effects at the interface between non-magnetic oxidescitations
Places of action
Organizations | Location | People |
---|
article
Single‐Source, Solvent‐Free, Room Temperature Deposition of Black γ‐CsSnI3 Films
Abstract
The presence of a nonoptically active polymorph (yellow‐phase) competing with the optically active polymorph (black γ‐phase) at room temperature in cesium tin iodide (CsSnI3) and the susceptibility of Sn to oxidation represent two of the biggest obstacles for the exploitation of CsSnI3 in optoelectronic devices. Here room‐temperature single‐source in vacuum deposition of smooth black γ −CsSnI3 thin films is reported. This is done by fabricating a solid target by completely solvent‐free mixing of CsI and SnI2 powders and isostatic pressing. By controlled laser ablation of the solid target on an arbitrary substrate at room temperature, the formation of CsSnI3 thin films with optimal optical properties is demonstrated. The films present a bandgap of 1.32 eV, a sharp absorption edge, and near‐infrared photoluminescence emission. These properties and X‐ray diffraction of the thin films confirm the formation of the orthorhombic (B‐γ ) perovskite phase. The thermal stability of the phase is ensured by applying in situ an Al2O3 capping layer. This work demonstrates the potential of pulsed laser deposition as a volatility‐insensitive single‐source growth technique of halide perovskites and represents a critical step forward in the development and future scalability of inorganic lead‐free halide perovskites.