People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vancso, Gyula Julius
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Designer Adhesives for Tough and Durable Interfaces in High-Performance Ti-Carbon PEKK Hybrid Jointscitations
- 2019Oscillating surfaces fueled by a continuous AC electric fieldcitations
- 2019Printing "smart" Inks of Redox-Responsive Organometallic Polymers on Microelectrode Arrays for Molecular Sensingcitations
- 2019Brush Swelling and Attachment Strength of Barnacle Adhesion Protein on Zwitterionic Polymer Films as a Function of Macromolecular Structurecitations
- 2017Synchrotron SAXS and Impedance Spectroscopy Unveil Nanostructure Variations in Redox-Responsive Porous Membranes from Poly(ferrocenylsilane) Poly(ionic liquid)scitations
- 2017Ion-Selective Ionic Polymer Metal Composite (IPMC) Actuator Based on Crown Ether Containing Sulfonated Poly(Arylene Ether Ketone)citations
- 2016Development of multifunctional complex fluids for coating of semi-porous surfaces
- 2010An overview on 12-polyurethane:Synthesis, structure and crystallizationcitations
- 2005Electrochemistry of Surface-Grafted Stimulus-Responsive Monolayers of Poly(ferrocenyldimethylsilane) on Goldcitations
- 2004Electrochemically Induced Morphology and Volume Changes in Surface-Grafted Poly(ferrocenyldimethylsilane) Monolayerscitations
Places of action
Organizations | Location | People |
---|
article
Oscillating surfaces fueled by a continuous AC electric field
Abstract
Recent developments in soft matter science provide options to add mobility and motility to polymer films and surfaces. Restrictively, the dynamics in these materials are modulated by a pulsated trigger and the route to autonomous dynamics is still a most intriguing challenge. Here, is the design of a self-sustaining oscillating surface is reported that is fueled by a continuous AC electric field without an intermittent on–off switch. The underlying principle is based on the polarity inversion over the poly(dimethyl siloxane) layer with a 10 nm thick silicon oxide top layer by an integrated tri-electrode structure connected to an alternating power source. In absence of the electric signal, the coating surface is flat. By applying an AC field, the surface corrugates into a sinusoidal morphology and starts oscillating to develop a continuous standing wave. Typically, the oscillation frequency is 0–5 Hz and the modulation depth is 150 nm. The topographical dynamics are analyzed in terms of viscoelastic materials properties and actuation kinetics and are supported by finite element calculations.