Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nizamoglu, Sedat

  • Google
  • 1
  • 9
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Perovskite-Based Optoelectronic Biointerfaces for Non-Bias-Assisted Photostimulation of Cells9citations

Places of action

Chart of shared publication
Kavakli, Ibrahim H.
1 / 1 shared
Gursoy-Ozdemir, Yasemin
1 / 1 shared
Srivastava, Shashi B.
1 / 2 shared
Pering, Samuel R.
1 / 1 shared
Aria, Mohammad M.
1 / 1 shared
Cameron, Pj
1 / 10 shared
Sadeghi, Sadra
1 / 1 shared
Dikbas, Ugur M.
1 / 1 shared
Sekerdag, Emine
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Kavakli, Ibrahim H.
  • Gursoy-Ozdemir, Yasemin
  • Srivastava, Shashi B.
  • Pering, Samuel R.
  • Aria, Mohammad M.
  • Cameron, Pj
  • Sadeghi, Sadra
  • Dikbas, Ugur M.
  • Sekerdag, Emine
OrganizationsLocationPeople

article

Perovskite-Based Optoelectronic Biointerfaces for Non-Bias-Assisted Photostimulation of Cells

  • Kavakli, Ibrahim H.
  • Gursoy-Ozdemir, Yasemin
  • Srivastava, Shashi B.
  • Pering, Samuel R.
  • Nizamoglu, Sedat
  • Aria, Mohammad M.
  • Cameron, Pj
  • Sadeghi, Sadra
  • Dikbas, Ugur M.
  • Sekerdag, Emine
Abstract

<p>Organohalide perovskites have attracted significant attention for efficient solar energy harvesting. They boost the photoelectrical conversion efficiency of the solution-processable solar cells because of having a nearly 100% internal quantum efficiency, operating in both narrow- and broadband spectral regimes, near-infrared sub-bandgap absorption, and high diffusion length. At the same time, these optoelectronic properties make it an ideal candidate for photostimulation of neurons. However, the biocompatibility of perovskite and its longevity in a cell medium constitute a major limitation to use it for biological interfaces. Here, high-level perovskite stability and biocompatibility are shown by forming hydrophobic perovskite microcrystals and encapsulating them within a polydimethylsiloxane layer. For effective and safe photostimulation of cells perovskite microcrystals are interfaced with poly(3-hexylthiophene-2,5-diyl) (P3HT) polymer for dissociation of the photogenerated charge carriers, which leads to non-bias-assisted cell stimulation. The results point out a new direction for the use of perovskite for photomedicine.</p>

Topics
  • perovskite
  • polymer
  • forming
  • biocompatibility