People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shokuhfar, Ali
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2019Ge-doped ZnSb/β-Zn4Sb3 nanocomposites with high thermoelectric performancecitations
- 2019Ge-Doped ZnSb/β-Zn4Sb3 Nanocomposites with High Thermoelectric Performancecitations
- 2019Ge‐Doped ZnSb/β‐Zn4Sb3 Nanocomposites with High Thermoelectric Performancecitations
- 2013The heating effect of iron-cobalt magnetic nanofluids in an alternating magnetic field: application in magnetic hyperthermia treatment
- 2010Effect of Alumina Additives on the Crystallite Size and Lattice Strain of Nanocrystalline Hydroxyapatite Obtained by Dry Mechanochemical Processcitations
- 2009Nanostructured Materials Prepared by Mechanical Alloying and Mechanochemical Processcitations
- 2009Synthesis and Structural Evaluation of Nanocrystalline Hydroxyapatite Obtained by Mechanochemical Treatment in Polyamide6 Vialscitations
Places of action
Organizations | Location | People |
---|
article
Ge‐Doped ZnSb/β‐Zn4Sb3 Nanocomposites with High Thermoelectric Performance
Abstract
<jats:title>Abstract</jats:title><jats:p>ZnSb/β‐Zn<jats:sub>4</jats:sub>Sb<jats:sub>3</jats:sub> nanocomposites are produced from Zn<jats:sub>1.1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>Ge<jats:italic><jats:sub>x</jats:sub></jats:italic>Sb mixtures using a two‐step process. First, proper amounts of the three elements are mixed, melted, and reacted at 800 K. During this process, the nonstoichiometric mixture is crystallized in a combination of ZnSb and β‐Zn<jats:sub>4</jats:sub>Sb<jats:sub>3</jats:sub> phases. Then, the material is ball milled and subsequently hot pressed. Through this process, a dense ZnSb/β‐Zn<jats:sub>4</jats:sub>Sb<jats:sub>3</jats:sub> composite, consisting of β‐Zn<jats:sub>4</jats:sub>Sb<jats:sub>3</jats:sub> nanoinclusions embedded within a ZnSb matrix, is formed. The particular phase distribution of the final ZnSb/β‐Zn<jats:sub>4</jats:sub>Sb<jats:sub>3</jats:sub> composites is a consequence of the harder and more brittle nature of ZnSb than Zn<jats:sub>4</jats:sub>Sb<jats:sub>3</jats:sub>, which translates into a stronger reduction of the size of the ZnSb crystal domains during ball milling. This small particle size and the high temperature generated during ball milling result in the melting of the ZnSb phase and the posterior crystallization of the two phases in a ZnSb/β‐Zn<jats:sub>4</jats:sub>Sb<jats:sub>3</jats:sub> matrix/nanoinclusion‐type phase distribution. This particular phase distribution and the presence of Ge result in excellent thermoelectric performances, with power factors up to 1.5 mW m<jats:sup>−1</jats:sup> K<jats:sup>−2</jats:sup>, lattice thermal conductivities down to 0.74 W m<jats:sup>−1</jats:sup> K<jats:sup>−1</jats:sup>, and a thermoelectric figures of merit, <jats:italic>ZT</jats:italic>, up to 1.2 at 650 K, which is among the highest <jats:italic>ZT</jats:italic> values reported for ZnSb.</jats:p>