Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Contreras-Bernal, Lidia

  • Google
  • 10
  • 57
  • 410

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Conformal TiO$_2$ aerogel-like films by plasma deposition: from omniphobic antireflective coatings to perovskite solar cell photoelectrodescitations
  • 2024Conformal TiO2 Aerogel-Like Films by Plasma Deposition: fromOmniphobic Antireflective Coatings to Perovskite Solar CellPhotoelectrodescitations
  • 2022Ultrathin Plasma Polymer Passivation of Perovskite Solar Cells for Improved Stability and Reproducibility17citations
  • 2022Ultrathin Plasma Polymer Passivation of Perovskite Solar Cells for Improved Stability and Reproducibility17citations
  • 2020Identification of recombination losses and charge collection efficiency in a perovskite solar cell by comparing impedance response to a drift-diffusion model61citations
  • 2019Impedance analysis of perovskite solar cells: a case study131citations
  • 2018The Role of Surface Recombination on the Performance of Perovskite Solar Cells:Effect of Morphology and Crystalline Phase of TiO 2 Contact38citations
  • 2018The Role of Surface Recombination on the Performance of Perovskite Solar Cells38citations
  • 2018The role of surface recombination on the performance of perovskite solar cells: Effect of morphology and crystalline phase of TiO 2 contact38citations
  • 2017Origin and whereabouts of recombination in perovskite solar cells70citations

Places of action

Chart of shared publication
Ferrer, Francisco, J.
1 / 1 shared
López-Santos, Carmen
2 / 9 shared
Czermak, Triana
2 / 2 shared
Ostrikov, Kostya, Ken
1 / 1 shared
Barranco, Angel
1 / 8 shared
Obrero, Jose, M.
1 / 1 shared
Aparicio Rebollo, Francisco, J.
1 / 1 shared
Pedrosa, Jose, M.
1 / 1 shared
Borras, Ana
5 / 15 shared
Orozco, Noe
2 / 2 shared
Sánchez-Valencia, Juan, Ramón
1 / 1 shared
Rojas, Teresa, C.
1 / 1 shared
Saghi, Zineb
2 / 9 shared
Barranco, Ángel
4 / 12 shared
Sánchez-Valencia, J. R.
1 / 6 shared
Borrás, Ana
1 / 11 shared
Obrero, José M.
1 / 2 shared
Pedrosa, José M.
1 / 2 shared
Aparicio, Francisco J.
1 / 3 shared
Rojas, T. Cristina
1 / 15 shared
Ferrer, Francisco J.
1 / 1 shared
Ostrikov, Kostya K.
1 / 1 shared
Valadez-Villalobos, Karen
1 / 2 shared
Castillo Seoane, Javier
1 / 3 shared
Barranco Quero, Ángel
1 / 19 shared
Aparicio Rebollo, Francisco Javier
1 / 11 shared
Sánchez Valencia, Juan Ramón
1 / 11 shared
Núñez-Gálvez, Fernando
1 / 2 shared
Anta Montalvo, Juan Antonio
1 / 3 shared
Obrero Pérez, José M.
1 / 3 shared
Borras Martos, Ana
1 / 3 shared
Nuñezgalvez, Fernando
1 / 1 shared
Obreroperez, Jose M.
1 / 1 shared
Sanchez-Valencia, Juan Ramon
1 / 3 shared
Rebollo, Francisco Javier Aparicio
1 / 9 shared
Castilloseoane, Javier
1 / 2 shared
Anta, Juan A.
6 / 13 shared
Valadezvillalobos, Karen
1 / 1 shared
Courtier, Nicola E.
4 / 6 shared
Wolf, Matther
1 / 1 shared
Anta, Juan
1 / 1 shared
Riquelme, Antonio
2 / 4 shared
Walker, Alison
1 / 5 shared
Richardson, Giles
1 / 11 shared
Bennett, Laurence John
1 / 1 shared
Ramos-Terrón, Susana
1 / 4 shared
Idígoras, Jesús
5 / 7 shared
Mora-Sero, Ivan
1 / 64 shared
Boix, Pablo P.
1 / 19 shared
Walker, Alison B.
3 / 15 shared
Cave, James M.
2 / 3 shared
Sánchez-Valencia, Juan R.
3 / 4 shared
Cave, James
1 / 6 shared
Ahmad, Shahzada
1 / 10 shared
Calio, Laura
1 / 3 shared
Salado, Manuel
1 / 8 shared
Todinova, Anna
1 / 3 shared
Chart of publication period
2024
2022
2020
2019
2018
2017

Co-Authors (by relevance)

  • Ferrer, Francisco, J.
  • López-Santos, Carmen
  • Czermak, Triana
  • Ostrikov, Kostya, Ken
  • Barranco, Angel
  • Obrero, Jose, M.
  • Aparicio Rebollo, Francisco, J.
  • Pedrosa, Jose, M.
  • Borras, Ana
  • Orozco, Noe
  • Sánchez-Valencia, Juan, Ramón
  • Rojas, Teresa, C.
  • Saghi, Zineb
  • Barranco, Ángel
  • Sánchez-Valencia, J. R.
  • Borrás, Ana
  • Obrero, José M.
  • Pedrosa, José M.
  • Aparicio, Francisco J.
  • Rojas, T. Cristina
  • Ferrer, Francisco J.
  • Ostrikov, Kostya K.
  • Valadez-Villalobos, Karen
  • Castillo Seoane, Javier
  • Barranco Quero, Ángel
  • Aparicio Rebollo, Francisco Javier
  • Sánchez Valencia, Juan Ramón
  • Núñez-Gálvez, Fernando
  • Anta Montalvo, Juan Antonio
  • Obrero Pérez, José M.
  • Borras Martos, Ana
  • Nuñezgalvez, Fernando
  • Obreroperez, Jose M.
  • Sanchez-Valencia, Juan Ramon
  • Rebollo, Francisco Javier Aparicio
  • Castilloseoane, Javier
  • Anta, Juan A.
  • Valadezvillalobos, Karen
  • Courtier, Nicola E.
  • Wolf, Matther
  • Anta, Juan
  • Riquelme, Antonio
  • Walker, Alison
  • Richardson, Giles
  • Bennett, Laurence John
  • Ramos-Terrón, Susana
  • Idígoras, Jesús
  • Mora-Sero, Ivan
  • Boix, Pablo P.
  • Walker, Alison B.
  • Cave, James M.
  • Sánchez-Valencia, Juan R.
  • Cave, James
  • Ahmad, Shahzada
  • Calio, Laura
  • Salado, Manuel
  • Todinova, Anna
OrganizationsLocationPeople

article

The Role of Surface Recombination on the Performance of Perovskite Solar Cells

  • Courtier, Nicola E.
  • Walker, Alison B.
  • Idígoras, Jesús
  • Borras, Ana
  • Barranco, Ángel
  • Contreras-Bernal, Lidia
  • Cave, James
  • Anta, Juan A.
  • Sánchez-Valencia, Juan R.
Abstract

<p>Herein, the preparation of 1D TiO<sub>2</sub> nanocolumnar films grown by plasma-enhanced chemical vapor deposition is reported as the electron selective layer (ESL) for perovskite solar devices. The impact of the ESL architecture (1D and 3D morphologies) and the nanocrystalline phase (anatase and amorphous) is analyzed. For anatase structures, similar power conversion efficiencies are achieved using an ESL either the 1D nanocolumns or the classical 3D nanoparticle film. However, lower power conversion efficiencies and different optoelectronic properties are found for perovskite devices based on amorphous 1D films. The use of amorphous TiO<sub>2</sub> as electron selective contact produces a bump in the reverse scan of the current–voltage curve as well as an additional electronic signal, detected by impedance spectroscopy measurements. The dependence of this additional signal on the optical excitation wavelength used in the IS experiments suggests that it stems from an interfacial process. Calculations using a drift-diffusion model which explicitly considers the selective contacts reproduces qualitatively the main features observed experimentally. These results demonstrate that for a solar cell in which the contact is working properly the open-circuit photovoltage is mainly determined by bulk recombination, whereas the introduction of a “bad contact” shifts the balance to surface recombination.</p>

Topics
  • nanoparticle
  • perovskite
  • impedance spectroscopy
  • surface
  • amorphous
  • phase
  • experiment
  • chemical vapor deposition