People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Borras, Ana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Conformal TiO$_2$ aerogel-like films by plasma deposition: from omniphobic antireflective coatings to perovskite solar cell photoelectrodes
- 2023Improved strain engineering of 2D materials by adamantane plasma polymer encapsulationcitations
- 2022Ultrathin Plasma Polymer Passivation of Perovskite Solar Cells for Improved Stability and Reproducibilitycitations
- 2021Anisotropic Resistivity Surfaces Produced in ITO Films by Laser‐Induced Nanoscale Self‐organizationcitations
- 2021Plasma‐Assisted Deposition of TiO<sub>2</sub> 3D Nanomembranes: Selective Wetting, Superomniphobicity, and Self‐Cleaningcitations
- 20193D Organic Nanofabrics: Plasma-Assisted Synthesis and Antifreezing Behavior of Superhydrophobic and Lubricant-Infused Slippery Surfacescitations
- 2018The Role of Surface Recombination on the Performance of Perovskite Solar Cells:Effect of Morphology and Crystalline Phase of TiO 2 Contactcitations
- 2018The Role of Surface Recombination on the Performance of Perovskite Solar Cellscitations
- 2018The role of surface recombination on the performance of perovskite solar cells: Effect of morphology and crystalline phase of TiO 2 contactcitations
- 2015Ultraviolet pretreatment of titanium dioxide and tin-doped indium oxide surfaces as a promoter of the adsorption of organic molecules in dry deposition processes: light patterning of organic nanowirescitations
- 2010One-step dry method for the synthesis of supported single-crystalline organic nanowires formed by π -conjugated moleculescitations
- 2009Luminescent and optical properties of nanocomposite thin films deposited by remote plasma polymerization of rhodamine 6Gcitations
- 2009Growth of crystalline TiO 2 by plasma enhanced chemical vapor depositioncitations
- 2008Preillumination of TiO 2 and Ta 2 O 5 photoactive thin films as a tool to tailor the synthesis of composite materialscitations
- 2008Reversible superhydrophobic to superhydrophilic conversion of Ag@TiO 2 composite nanofiber surfacescitations
Places of action
Organizations | Location | People |
---|
article
The Role of Surface Recombination on the Performance of Perovskite Solar Cells
Abstract
<p>Herein, the preparation of 1D TiO<sub>2</sub> nanocolumnar films grown by plasma-enhanced chemical vapor deposition is reported as the electron selective layer (ESL) for perovskite solar devices. The impact of the ESL architecture (1D and 3D morphologies) and the nanocrystalline phase (anatase and amorphous) is analyzed. For anatase structures, similar power conversion efficiencies are achieved using an ESL either the 1D nanocolumns or the classical 3D nanoparticle film. However, lower power conversion efficiencies and different optoelectronic properties are found for perovskite devices based on amorphous 1D films. The use of amorphous TiO<sub>2</sub> as electron selective contact produces a bump in the reverse scan of the current–voltage curve as well as an additional electronic signal, detected by impedance spectroscopy measurements. The dependence of this additional signal on the optical excitation wavelength used in the IS experiments suggests that it stems from an interfacial process. Calculations using a drift-diffusion model which explicitly considers the selective contacts reproduces qualitatively the main features observed experimentally. These results demonstrate that for a solar cell in which the contact is working properly the open-circuit photovoltage is mainly determined by bulk recombination, whereas the introduction of a “bad contact” shifts the balance to surface recombination.</p>