Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Soethoudt, Job

  • Google
  • 2
  • 11
  • 108

IMEC

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Area-Selective Deposition of Ruthenium by Area-Dependent Surface Diffusion48citations
  • 2018Diffusion‐Mediated Growth and Size‐Dependent Nanoparticle Reactivity during Ruthenium Atomic Layer Deposition on Dielectric Substrates60citations

Places of action

Chart of shared publication
Grillo, F.
1 / 6 shared
De Martín, Lilian
1 / 1 shared
Delabie, Annelies
2 / 20 shared
Marques, Esteban A.
2 / 2 shared
Van Dongen, Kaat
1 / 1 shared
Van Ommen, J. R.
1 / 13 shared
Nyns, Laura
1 / 4 shared
Ommen, J. Ruud Van
1 / 2 shared
Elshocht, Sven Van
1 / 4 shared
Tomczak, Yoann
1 / 1 shared
Grillo, Fabio
1 / 2 shared
Chart of publication period
2020
2018

Co-Authors (by relevance)

  • Grillo, F.
  • De Martín, Lilian
  • Delabie, Annelies
  • Marques, Esteban A.
  • Van Dongen, Kaat
  • Van Ommen, J. R.
  • Nyns, Laura
  • Ommen, J. Ruud Van
  • Elshocht, Sven Van
  • Tomczak, Yoann
  • Grillo, Fabio
OrganizationsLocationPeople

article

Diffusion‐Mediated Growth and Size‐Dependent Nanoparticle Reactivity during Ruthenium Atomic Layer Deposition on Dielectric Substrates

  • Delabie, Annelies
  • Nyns, Laura
  • Ommen, J. Ruud Van
  • Elshocht, Sven Van
  • Tomczak, Yoann
  • Marques, Esteban A.
  • Soethoudt, Job
  • Grillo, Fabio
Abstract

<jats:title>Abstract</jats:title><jats:p>Understanding the growth mechanisms during the early stages of atomic layer deposition (ALD) is of interest for several applications including thin film deposition, catalysis, and area‐selective deposition. The surface dependence and growth mechanism of (ethylbenzyl)(1‐ethyl‐1,4‐cyclohexadienyl)ruthenium and O<jats:sub>2</jats:sub> ALD at 325 °C on HfO<jats:sub>2</jats:sub>, Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, OH, and SiOSi terminated SiO<jats:sub>2</jats:sub>, and organosilicate glass (OSG) are investigated. The experimental results show that precursor adsorption is strongly affected by the surface termination of the dielectric, and proceeds most rapidly on OH terminated dielectrics, followed by SiOSi and finally SiCH<jats:sub>3</jats:sub> terminated dielectrics. The initial stages of growth are characterized by the formation and growth of Ru nanoparticles, which is mediated by the diffusion of Ru species. Mean‐field and kinetic Monte Carlo modeling show that ALD on OSG is best described when accounting for (1) cyclic generation of new nanoparticles at the surface, (2) surface diffusion of both atomic species and nanoparticles, and (3) size‐dependent nanoparticle reactivity. In particular, the models indicate that precursor adsorption initially occurs only on the dielectric substrate, and occurs on the Ru nanoparticles only when these reach a critical size of about 0.85 nm. This phenomenon is attributed to the catalytic decomposition of oxygen requiring a minimum Ru nanoparticle size.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • thin film
  • Oxygen
  • glass
  • glass
  • decomposition
  • atomic layer deposition
  • Ruthenium