People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Budd, Peter M.
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Mixed matrix and thin-film nanocomposite membranes of PIM-1 and hydrolyzed PIM-1 with Ni- and Co-MOF-74 nanoparticles for CO2 separation: Comparison of blending, grafting and crosslinking fabrication methodscitations
- 2024Stiffening and softening of freshly prepared and aged CTA, PTMSP, and PIM‐1 films exposed to volatile compounds
- 2024High gas permeability in aged superglassy membranes with nanosized UiO-66−NH2/cPIM-1 network fillerscitations
- 2023CO2 separation using thin film composite membranes of acid-hydrolyzed PIM-1citations
- 2022Porous silica nanosheets in PIM-1 membranes for CO2 separationcitations
- 2022Thin film nanocomposite membranes of PIM-1 and graphene oxide/ZIF-8 nanohybrids for organophilic pervaporationcitations
- 2021Electrospun Adsorptive Nanofibrous Membranes from Ion Exchange Polymers to Snare Textile Dyes from Wastewatercitations
- 2021Electrospun Adsorptive Nanofibrous Membranes from Ion Exchange Polymers to Snare Textile Dyes from Wastewatercitations
- 2021PIM-1/Holey Graphene Oxide Mixed Matrix Membranes for Gas Separation: Unveiling the Role of Holescitations
- 2020Superglassy Polymers to Treat Natural Gas by Hybrid Membrane/Amine Processes: Can Fillers Help?citations
- 2020Graphene–PSS/L-DOPA nanocomposite cation exchange membranes for electrodialysis desalinationcitations
- 2019Electrostatically-coupled graphene oxide nanocomposite cation exchange membranecitations
- 2018Impeded physical aging in PIM-1 membranes containing graphene-like fillerscitations
- 2018Graphene oxide – polybenzimidazolium nanocomposite anion exchange membranes for electrodialysiscitations
- 2018Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO 2 separationcitations
- 2018Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separationcitations
- 2018Graphene/Polyamide Laminates for Supercritical CO 2 and H 2 S Barrier Applications: An Approach toward Permeation Shutdowncitations
- 2018Graphene/Polyamide Laminates for Supercritical CO2 and H2S Barrier Applications: An Approach toward Permeation Shutdowncitations
- 2017Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillerscitations
- 2016Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporositycitations
- 2005Polymerization and carbonization of high internal phase emulsionscitations
- 2004Polymers of intrinsic microporosity (PIMs): Robust, solution-processable, organic nanoporous materialscitations
Places of action
Organizations | Location | People |
---|
article
Graphene/Polyamide Laminates for Supercritical CO2 and H2S Barrier Applications: An Approach toward Permeation Shutdown
Abstract
<p>Graphene is potentially the perfect barrier material, being impermeable even to the smallest gas molecules, but in practice it is difficult to achieve defect-free graphene layers at large scale. Here, exceptional barrier performance for laminates comprising graphene nanoplatelet (GNP) paper sandwiched between two discs of polyamide 11 (PA11) is demonstrated. Results are compared with sandwich structures incorporating melt-processed GNP/PA11 composites, and with chemical vapor deposition (CVD) monolayer graphene transferred onto PA11. PA11 is of interest as a polymer commonly utilized within the oil and gas industry for antiwear and barrier layers in flexible risers. Permeation studies were undertaken for a feed mixture of carbon dioxide (CO<sub>2</sub>) with 1.48% hydrogen sulfide (H<sub>2</sub>S) at a temperature of 60 °C and pressures up to 400 bar, providing the first data for the performance of graphene as a barrier to a supercritical fluid. Whereas a GNP/PA11 composite and a CVD graphene monolayer have little effect on permeability, compared to a pure PA11 control sample, a GNP/PA11 laminate reduces CO<sub>2</sub> permeability by more than an order of magnitude, and reduces H<sub>2</sub>S permeability to an undetectable level.</p>