Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Haque, Sirazul

  • Google
  • 4
  • 16
  • 245

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2019Wave-optical front structures on silicon and perovskite thin-film solar cells18citations
  • 2019Lightwave trapping in thin film solar cells with improved photonic-structured front contacts33citations
  • 2019Photonic-structured TiO 2 for high-efficiency, flexible and stable Perovskite solar cells119citations
  • 2018Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layer75citations

Places of action

Chart of shared publication
Olalla, Sánchez-Sobrado
3 / 5 shared
Mateus, Tiago
2 / 12 shared
Águas, Hugo
4 / 41 shared
Martins, Rodrigo
4 / 166 shared
Mendes, Manuel Joao
4 / 18 shared
Cunha, José M. V.
1 / 7 shared
Leitão, Joaquim P.
1 / 6 shared
Edoff, Marika
1 / 26 shared
Teixeira, Jennifer P.
1 / 5 shared
Ribeiro-Andrade, Rodrigo
1 / 1 shared
Salomé, Pedro M. P.
1 / 6 shared
Sadewasser, Sascha
1 / 14 shared
Fernandes, Paulo A.
1 / 10 shared
Vermang, Bart
1 / 33 shared
Borme, Jêrome
1 / 1 shared
González, Juan C.
1 / 2 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • Olalla, Sánchez-Sobrado
  • Mateus, Tiago
  • Águas, Hugo
  • Martins, Rodrigo
  • Mendes, Manuel Joao
  • Cunha, José M. V.
  • Leitão, Joaquim P.
  • Edoff, Marika
  • Teixeira, Jennifer P.
  • Ribeiro-Andrade, Rodrigo
  • Salomé, Pedro M. P.
  • Sadewasser, Sascha
  • Fernandes, Paulo A.
  • Vermang, Bart
  • Borme, Jêrome
  • González, Juan C.
OrganizationsLocationPeople

article

Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layer

  • Cunha, José M. V.
  • Leitão, Joaquim P.
  • Haque, Sirazul
  • Edoff, Marika
  • Martins, Rodrigo
  • Teixeira, Jennifer P.
  • Mendes, Manuel Joao
  • Ribeiro-Andrade, Rodrigo
  • Águas, Hugo
  • Salomé, Pedro M. P.
  • Sadewasser, Sascha
  • Fernandes, Paulo A.
  • Vermang, Bart
  • Borme, Jêrome
  • González, Juan C.
Abstract

<p>Thin film solar cells based in Cu(In,Ga)Se<sub>2</sub> (CIGS) are among the most efficient polycrystalline solar cells, surpassing CdTe and even polycrystalline silicon solar cells. For further developments, the CIGS technology has to start incorporating different solar cell architectures and strategies that allow for very low interface recombination. In this work, ultrathin 350 nm CIGS solar cells with a rear interface passivation strategy are studied and characterized. The rear passivation is achieved using an Al<sub>2</sub>O<sub>3</sub> nanopatterned point structure. Using the cell results, photoluminescence measurements, and detailed optical simulations based on the experimental results, it is shown that by including the nanopatterned point contact structure, the interface defect concentration lowers, which ultimately leads to an increase of solar cell electrical performance mostly by increase of the open circuit voltage. Gains to the short circuit current are distributed between an increased rear optical reflection and also due to electrical effects. The approach of mixing several techniques allows us to make a discussion considering the different passivation gains, which has not been done in detail in previous works. A solar cell with a nanopatterned rear contact and a 350 nm thick CIGS absorber provides an average power conversion efficiency close to 10%.</p>

Topics
  • impedance spectroscopy
  • photoluminescence
  • thin film
  • simulation
  • Silicon
  • defect
  • power conversion efficiency