People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sadewasser, Sascha
International Iberian Nanotechnology Laboratory
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Towards All-Non-Vacuum-Processed Photovoltaic Systems: A Water-Based Screen-Printed Cu(In,Ga)Se2 Photoabsorber with a 6.6% Efficiencycitations
- 2021Novel Polymorph of GaSecitations
- 2021Efficient reSe2 photodetectors with CVD single-crystal graphene contactscitations
- 2021Scanning Transmission Electron Microscopy Investigations of an Efficiency Enhanced Annealed Cu(In1-xGax)Se2 Solar Cells with Sputtered Zn(O,S) Buffer Layer
- 2019Micro-Solar Cells By Electrodeposition into a Microelectrode Array – Effect of Dot Diameter
- 2019Evidence of Reversible Oxidation at CuInSe2 Grain Boundaries
- 2018Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layercitations
- 2017CdS and Zn1−xSnxOy buffer layers for CIGS solar cells
- 2017Epitaxial CuInSe2 thin films grown by molecular beam epitaxy and migration enhanced epitaxycitations
- 2017Cd and Cu Interdiffusion in Cu(In, Ga)Se2/CdS Hetero-Interfaces
- 2012Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements
- 2012Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements
- 2011Chalcopyrite Semiconductors for Quantum Well Solar Cellscitations
- 2010Optoelectronic evaluation of the nanostructuring approach to chalcopyrite-based intermediate band materialscitations
Places of action
Organizations | Location | People |
---|
article
Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layer
Abstract
<p>Thin film solar cells based in Cu(In,Ga)Se<sub>2</sub> (CIGS) are among the most efficient polycrystalline solar cells, surpassing CdTe and even polycrystalline silicon solar cells. For further developments, the CIGS technology has to start incorporating different solar cell architectures and strategies that allow for very low interface recombination. In this work, ultrathin 350 nm CIGS solar cells with a rear interface passivation strategy are studied and characterized. The rear passivation is achieved using an Al<sub>2</sub>O<sub>3</sub> nanopatterned point structure. Using the cell results, photoluminescence measurements, and detailed optical simulations based on the experimental results, it is shown that by including the nanopatterned point contact structure, the interface defect concentration lowers, which ultimately leads to an increase of solar cell electrical performance mostly by increase of the open circuit voltage. Gains to the short circuit current are distributed between an increased rear optical reflection and also due to electrical effects. The approach of mixing several techniques allows us to make a discussion considering the different passivation gains, which has not been done in detail in previous works. A solar cell with a nanopatterned rear contact and a 350 nm thick CIGS absorber provides an average power conversion efficiency close to 10%.</p>