People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zheludkevich, Mikhail
Helmholtz-Zentrum Hereon
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Exploring the Effect of Microstructure and Surface Recombination on Hydrogen Effusion in Zn–Ni‐Coated Martensitic Steels by Advanced Computational Modelingcitations
- 2023Searching the chemical space for effective magnesium dissolution modulators: a deep learning approach using sparse features
- 2023Predicting corrosion inhibition efficiencies of small organic molecules using data-driven techniques
- 2022Chromate-Free Corrosion Protection Strategies for Magnesium Alloys—A Review: Part II—PEO and Anodizingcitations
- 2022The Role of Cu-Based Intermetallic on the Direct Growth of a ZnAl LDH Film on AA2024citations
- 2021The Influence of in‐situ Anatase Particle Addition on the Formation and Properties of Multi‐Functional Plasma Electrolytic Oxidation Coatings on AA2024 Aluminium Alloycitations
- 2021The Stability and Chloride Entrapping Capacity of ZnAl-NO2 LDH in High-Alkaline/Cementitious Environmentcitations
- 2021Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models
- 2020A first-principles analysis of the charge transfer in magnesium corrosioncitations
- 2020A first-principles analysis of the charge transfer in magnesium corrosioncitations
- 2020ATR-FTIR in Kretschmann configuration integrated with electrochemical cell as in situ interfacial sensitive tool to study corrosion inhibitors for magnesium substrates
- 2020Magnetic Properties of La<sub>0.9</sub>A<sub>0.1</sub>MnO<sub>3</sub> (A: Li, Na, K) Nanopowders and Nanoceramicscitations
- 2020Magnetic Properties of La0.9A0.1MnO3 (A: Li, Na, K) Nanopowders and Nanoceramicscitations
- 2019Data science based mg corrosion engineering
- 2019Effect of unequal levels of deformation and fragmentation on the electrochemical response of friction stir welded AA2024-T3 alloycitations
- 2019Enhanced predictive corrosion modeling with implicit corrosion productscitations
- 2017Role of Phase Composition of PEO Coatings on AA2024 for In-Situ LDH Growthcitations
- 2017Direct Synthesis of Electrowettable Carbon Nanowall–Diamond Hybrid Materials from Sacrificial Ceramic Templates Using HFCVDcitations
Places of action
Organizations | Location | People |
---|
article
Direct Synthesis of Electrowettable Carbon Nanowall–Diamond Hybrid Materials from Sacrificial Ceramic Templates Using HFCVD
Abstract
Carbon‐on‐carbon materials carry the potential to be a major disruptive technology in fields like energy storage and electronics. In the present work, hot filament chemical vapor deposition (HFCVD) is used to synthesize carbon nanowall (CNW) tetrapods coupled to nanocrystalline diamond in a 3D hybrid network form. The CNW/diamond phase proportion as well as the structural morphology can be easily adjusted by the CVD parameters, allowing a single‐step synthesis of CNW micro‐ and nanopillars or CNW/diamond 3D hybrid materials, in the powder form or as interconnected free‐standing specimens. Additionally, the direct incorporation of SnO2 catalyst particles during the one‐step CVD process is demonstrated. µ‐Raman and electron microscopy are used to understand the evolution of the morphological characteristics associated to the growth mechanism. The electrowettability behavior of the novel CNW/diamond hybrid material is demonstrated by electrochemical polarization studies. Such multifunctional carbon‐based hybrid 3D nanomaterials can find promising applications in advanced technologies such as energy storage.