Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Soroush, Masoud

  • Google
  • 1
  • 4
  • 77

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Engineering Ultrathin Polyaniline in Micro/Mesoporous Carbon Supercapacitor Electrodes Using Oxidative Chemical Vapor Deposition77citations

Places of action

Chart of shared publication
Gogotsi, Yury
1 / 30 shared
Boota, Muhammad
1 / 2 shared
Smolin, Yuriy Y.
1 / 1 shared
Aken, Katherine L. Van
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Gogotsi, Yury
  • Boota, Muhammad
  • Smolin, Yuriy Y.
  • Aken, Katherine L. Van
OrganizationsLocationPeople

article

Engineering Ultrathin Polyaniline in Micro/Mesoporous Carbon Supercapacitor Electrodes Using Oxidative Chemical Vapor Deposition

  • Gogotsi, Yury
  • Boota, Muhammad
  • Smolin, Yuriy Y.
  • Aken, Katherine L. Van
  • Soroush, Masoud
Abstract

<jats:p>In this work, oxidative chemical vapor deposition (oCVD) is demonstrated to enable the integration of nanometer‐thin polyaniline (PANI) that significantly improves charge storage capacity of supercapacitors utilizing carbide‐derived carbon (CDC) with a bimodal (micro/mesoporous) pore size distribution. To our knowledge, this work is the first reported synthesis of PANI via oCVD. The oCVD process allows for the integration of PANI into pores as small as 1.7 nm, and resulting CDC/PANI electrodes have a gravimetric capacitance more than twice that of bare CDC (136 F g<jats:sup>−1</jats:sup> for 11 wt% of PANI in the CDC electrode versus 60 F g<jats:sup>−1</jats:sup> for bare Mo<jats:sub>2</jats:sub>C‐CDC at 10 mV s<jats:sup>−1</jats:sup>). This yields a PANI‐only gravimetric capacitance of ≈690 F g<jats:sup>−1</jats:sup>, which is close to the theoretical value of 750 F g<jats:sup>−1</jats:sup>. The coating preserves the native electrode surface area and pore size distribution, while improving capacitance due to the faradaic redox reactions of PANI. Even at high scan rates of over 100 mV s<jats:sup>−1</jats:sup>, the added pseudocapacitance from PANI remains evident. The composite electrode exhibits good cyclability, decreasing to 90% of the initial value (≈100 F g<jats:sup>−1</jats:sup>) after 10 000 cycles.</jats:p>

Topics
  • impedance spectroscopy
  • pore
  • surface
  • Carbon
  • carbide
  • composite
  • chemical vapor deposition