Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Roy, Rupam

  • Google
  • 1
  • 6
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Electroactive Ionic Polymer of Intrinsic Microporosity for High‐Performance Capacitive Energy Storage8citations

Places of action

Chart of shared publication
Farha, Omar K.
1 / 23 shared
Sharma, Chaitanya
1 / 1 shared
Kirlikovali, Kent O.
1 / 1 shared
Nino, Juan C.
1 / 6 shared
Bose, Saptasree
1 / 2 shared
Marquez, Joshua D.
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Farha, Omar K.
  • Sharma, Chaitanya
  • Kirlikovali, Kent O.
  • Nino, Juan C.
  • Bose, Saptasree
  • Marquez, Joshua D.
OrganizationsLocationPeople

article

Electroactive Ionic Polymer of Intrinsic Microporosity for High‐Performance Capacitive Energy Storage

  • Farha, Omar K.
  • Sharma, Chaitanya
  • Kirlikovali, Kent O.
  • Nino, Juan C.
  • Bose, Saptasree
  • Roy, Rupam
  • Marquez, Joshua D.
Abstract

<jats:title>Abstract</jats:title><jats:p>Here, an ionic polymer of intrinsic microporosity (PIM) as a high‐functioning supercapacitor electrode without the need for conductive additives or binders is reported. The performance of this material is directly related to its large accessible surface area. By comparing electrochemical performance between a porous viologen PIM and a nonporous viologen polymer, it is revealed that the high energy and power density are both due to the ability of ions to rapidly access the ionic PIM. In 0.1 <jats:sc>m</jats:sc> H<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub> electrolyte, a pseudocapacitve energy of 315 F g<jats:sup>−1</jats:sup> is observed, whereas in 0.1 <jats:sc>m</jats:sc> Na<jats:sub>2</jats:sub>SO4, a capacitive energy density of 250 F g<jats:sup>−1</jats:sup> is obtained. In both cases, this capacity is retained over 10 000 charge–discharge cycles, without the need for stabilizing binders or conductive additives even at moderate loadings (5 mg cm<jats:sup>−2</jats:sup>). This desirable performance is maintained in a prototype symmetric two‐electrode capacitor device, which has &gt;99% Coloumbic efficiency and a &lt;10 mF capacity drop over 2000 cycles. These results demonstrate that ionic PIMs function well as standalone supercapacitor electrodes and suggest ionic PIMs may perform well in other electrochemical devices such as sensors, ion‐separation membranes, or displays.</jats:p>

Topics
  • porous
  • density
  • impedance spectroscopy
  • surface
  • polymer
  • energy density