Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Elfattah, Zakaria M. Abd

  • Google
  • 1
  • 14
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Unconventional Band Structure via Combined Molecular Orbital and Lattice Symmetries in a Surface‐Confined Metallated Graphdiyne Sheet12citations

Places of action

Chart of shared publication
Piquerozulaica, Ignacio
1 / 1 shared
Hu, Wenqi
1 / 1 shared
Allegretti, Francesco
1 / 8 shared
Wu, Kehui
1 / 1 shared
Küchle, Johannes
1 / 1 shared
Lyu, Yuanhao
1 / 1 shared
Haag, Felix
1 / 2 shared
Chen, Lan
1 / 1 shared
Klyatskaya, Svetlana
1 / 9 shared
Ruben, Mario
1 / 13 shared
Muntwiler, Matthias
1 / 12 shared
Seitsonen, Ari Paavo
1 / 4 shared
Aktürk, Ethem
1 / 1 shared
Barth, Johannes V.
1 / 15 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Piquerozulaica, Ignacio
  • Hu, Wenqi
  • Allegretti, Francesco
  • Wu, Kehui
  • Küchle, Johannes
  • Lyu, Yuanhao
  • Haag, Felix
  • Chen, Lan
  • Klyatskaya, Svetlana
  • Ruben, Mario
  • Muntwiler, Matthias
  • Seitsonen, Ari Paavo
  • Aktürk, Ethem
  • Barth, Johannes V.
OrganizationsLocationPeople

article

Unconventional Band Structure via Combined Molecular Orbital and Lattice Symmetries in a Surface‐Confined Metallated Graphdiyne Sheet

  • Piquerozulaica, Ignacio
  • Hu, Wenqi
  • Allegretti, Francesco
  • Wu, Kehui
  • Elfattah, Zakaria M. Abd
  • Küchle, Johannes
  • Lyu, Yuanhao
  • Haag, Felix
  • Chen, Lan
  • Klyatskaya, Svetlana
  • Ruben, Mario
  • Muntwiler, Matthias
  • Seitsonen, Ari Paavo
  • Aktürk, Ethem
  • Barth, Johannes V.
Abstract

<jats:title>Abstract</jats:title><jats:p>Graphyne (GY) and graphdiyne (GDY)‐based monolayers represent the next generation 2D carbon‐rich materials with tunable structures and properties surpassing those of graphene. However, the detection of band formation in atomically thin GY/GDY analogues has been challenging, as both long‐range order and atomic precision have to be fulfilled in the system. The present work reports direct evidence of band formation in on‐surface synthesized metallated Ag‐GDY sheets with mesoscopic (≈1 µm) regularity. Employing scanning tunneling and angle‐resolved photoemission spectroscopies, energy‐dependent transitions of real‐space electronic states above the Fermi level and formation of the valence band are respectively observed. Furthermore, density functional theory (DFT) calculations corroborate the observations and reveal that doubly degenerate frontier molecular orbitals on a honeycomb lattice give rise to flat, Dirac and Kagome bands close to the Fermi level. DFT modeling also indicates an intrinsic band gap for the pristine sheet material, which is retained for a bilayer with <jats:italic>h</jats:italic>‐BN, whereas adsorption‐induced in‐gap electronic states evolve at the synthesis platform with Ag‐GDY decorating the (111) facet of silver. These results illustrate the tremendous potential for engineering novel band structures via molecular orbital and lattice symmetries in atomically precise 2D carbon materials.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • Carbon
  • silver
  • theory
  • density functional theory
  • band structure