People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ivanov, Yurii P.
University of Cambridge
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Decoupled High‐Mobility Graphene on Cu(111)/Sapphire via Chemical Vapor Depositioncitations
- 2024Exogenous Metal Cations in the Synthesis of CsPbBr3 Nanocrystals and Their Interplay with Tertiary Aminescitations
- 2024Exogenous Metal Cations in the Synthesis of CsPbBr3 Nanocrystals and Their Interplay with Tertiary Aminescitations
- 2024Dry synthesis of bi-layer nanoporous metal films as plasmonic metamaterialcitations
- 2023Synergistic enhancement of hydrogen interactions in palladium–silicon–gold metallic glass with multilayered graphenecitations
- 2023Synergistic enhancement of hydrogen interactions in palladium-gold-silicon metallic glass on multilayered graphenecitations
- 2022Hydrogen storage performance of the multi-principal-component CoFeMnTiVZr alloy in electrochemical and gas-solid reactions.
- 2022Ca Solubility in a BiFeO3-Based System with a Secondary Bi2O3 Phase on a Nanoscale.
- 2022One Hundred-Nanometer-Sized CsPbBr3/m-SiO2 Composites Prepared via Molten-Salts Synthesis are Optimal Green Phosphors for LCD Display Devicescitations
- 2022The effect of Ni or Co additions on the structure of Zr60Cu30Al10 bulk metallic glass revealed by high-energy synchrotron radiationcitations
- 2021In situ correlation between metastable phase-transformation mechanism and kinetics in a metallic glass.
- 2021Strain-induced structure and oxygen transport interactions in epitaxial La 0.6 Sr 0.4 CoO 3− δ thin films
- 2021In situ correlation between metastable phase-transformation mechanism and kinetics in a metallic glasscitations
- 2021In situ correlation between metastable phase-transformation mechanism and kinetics in a metallic glass
- 2021In situ correlation between metastable phase-transformation mechanism and kinetics in a metallic glass
- 2021Transition metal-based high entropy alloy microfiber electrodescitations
- 2021Enhancement of interfacial hydrogen interactions with nanoporous gold-containing metallic glasscitations
- 2021Transition metal-based high entropy alloy microfiber electrodes: Corrosion behavior and hydrogen activitycitations
- 2020Effective electrocatalytic methanol oxidation of Pd-based metallic glass nanofilmscitations
- 2020Cover Feature: Metallic Glass Films with Nanostructured Periodic Density Fluctuations Supported on Si/SiO2 as an Efficient Hydrogen Sorber (Chem. Eur. J. 37/2020)
- 2020Metallic glass films with nanostructured periodic density fluctuations supported on Si/SiO 2 as an efficient hydrogen sorbercitations
- 2020Metallic Glass Films with Nanostructured Periodic Density Fluctuations Supported on Si/SiO2 as an Efficient Hydrogen Sorber.
- 2017Current induced domain wall motion in cylindrical nanowires
- 2016Tunable magnetic nanowires for biomedical and harsh environment applicationscitations
- 2015Magnetoelectric polymer nanocomposite for flexible electronicscitations
- 2015Fabrication and properties of multiferroic nanocomposite filmscitations
Places of action
Organizations | Location | People |
---|
article
Decoupled High‐Mobility Graphene on Cu(111)/Sapphire via Chemical Vapor Deposition
Abstract
The growth of high-quality graphene on flat and rigid templates, such as metal thin films on insulating wafers, is regarded as a key enabler for technologies based on 2D materials. In this work, the growth of decoupled graphene is introduced via non-reducing low-pressure chemical vapor deposition (LPCVD) on crystalline Cu(111) films deposited on sapphire. The resulting film is atomically flat, with no detectable cracks or ripples, and lies atop of a thin Cu2O layer, as confirmed by microscopy, diffraction, and spectroscopy analyses. Post-growth treatment of the partially decoupled graphene enables full and uniform oxidation of the interface, greatly simplifying subsequent transfer processes, particularly dry-pick up — a task that proves challenging when dealing with graphene directly synthesized on metallic Cu(111). Electrical transport measurements reveal high carrier mobility at room temperature, exceeding 104cm2V−1s−1 on SiO2/Si and 105cm2V−1s−1 upon encapsulation in hexagonal boron nitride (hBN). The demonstrated growth approach yields exceptional material quality, in line with micro-mechanically exfoliated graphene flakes, and thus paves the way toward large-scale production of pristine graphene suitable for high-performance next-generation applications.