People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Accardo, Angelo
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Curvature tuning through defect-based 4D printingcitations
- 2024Bone cell response to additively manufactured 3D micro-architectures with controlled Poisson's ratiocitations
- 20244D Printing for Biomedical Applicationscitations
- 2023Auxeticity as a Mechanobiological Tool to Create Meta-Biomaterialscitations
- 2023Micro 3D Printing Elastomeric IP-PDMS Using Two-Photon Polymerisationcitations
- 2022Two-Photon Polymerization of 2.5D and 3D Microstructures Fostering a Ramified Resting Phenotype in Primary Microgliacitations
- 2022Engineered cell culture microenvironments for mechanobiology studies of brain neural cellscitations
- 2020Aerosol Direct Writing and Thermal Tuning of Copper Nanoparticle Patterns as Surface-Enhanced Raman Scattering Sensorscitations
- 2017Multi-photon Direct Laser Writing and 3D Imaging of Polymeric Freestanding Architectures for Cell Colonizationcitations
Places of action
Organizations | Location | People |
---|
document
4D Printing for Biomedical Applications
Abstract
<p>4D (bio-)printing endows 3D printed (bio-)materials with multiple functionalities and dynamic properties. 4D printed materials have been recently used in biomedical engineering for the design and fabrication of biomedical devices, such as stents, occluders, microneedles, smart 3D-cell engineered microenvironments, drug delivery systems, wound closures, and implantable medical devices. However, the success of 4D printing relies on the rational design of 4D printed objects, the selection of smart materials, and the availability of appropriate types of external (multi-)stimuli. Here, this work first highlights the different types of smart materials, external stimuli, and design strategies used in 4D (bio-)printing. Then, it presents a critical review of the biomedical applications of 4D printing and discusses the future directions of biomedical research in this exciting area, including in vivo tissue regeneration studies, the implementation of multiple materials with reversible shape memory behaviors, the creation of fast shape-transformation responses, the ability to operate at the microscale, untethered activation and control, and the application of (machine learning-based) modeling approaches to predict the structure–property and design–shape transformation relationships of 4D (bio)printed constructs.</p>