Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Galek, Przemyslaw

  • Google
  • 1
  • 5
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024A Precursor‐Derived Ultramicroporous Carbon for Printing Iontronic Logic Gates and Super‐Varactors8citations

Places of action

Chart of shared publication
Grothe, Julia
1 / 3 shared
Kaskel, Stefan
1 / 52 shared
Bahrawy, Ahmed
1 / 2 shared
Gellrich, Christin
1 / 1 shared
Shupletsov, Leonid
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Grothe, Julia
  • Kaskel, Stefan
  • Bahrawy, Ahmed
  • Gellrich, Christin
  • Shupletsov, Leonid
OrganizationsLocationPeople

article

A Precursor‐Derived Ultramicroporous Carbon for Printing Iontronic Logic Gates and Super‐Varactors

  • Grothe, Julia
  • Kaskel, Stefan
  • Bahrawy, Ahmed
  • Gellrich, Christin
  • Galek, Przemyslaw
  • Shupletsov, Leonid
Abstract

<jats:title>Abstract</jats:title><jats:p>A liquid precursor for 3D printing ultramicroporous carbons (pore width &lt;0.7 nm) to create a novel in‐plane capacitive‐analog of semiconductor‐based diodes (CAPodes) is presented. This proof‐of‐concept integrates functional EDLCs into microstructured iontronic devices. The working principle is based on selective ion‐sieving, controlling the size of the electrolyte ions, and the nanoporous sieving carbon's pore size. By blocking bulky electrolyte ions from entering the sub‐nanometer pores, a unidirectional charging characteristic with controllable ion flux is achieved, leading to diodic <jats:italic>U</jats:italic>‐<jats:italic>I</jats:italic> characteristics with a high rectification ratio. The liquid precursor approach enables successful printing of miniaturized in‐plane CAPodes. A combination of inkjet and extrusion printing techniques with suitable inks is explored to fabricate electrode materials with engineered porosity. Deliberate fine‐tuning of the ultramicroporous carbon's porosity and surface area is achieved using a customized carbon precursor and CO<jats:sc><jats:sub>2</jats:sub></jats:sc> etching techniques. Electrochemical evaluation of the printed CAPodes demonstrates successful miniaturization compared with macroscopic film assembly. 3D manufacturing and miniaturization allow for the integration of CAPodes into logic gate circuits (OR, AND). For the first time, these switchable devices are used as variable capacitors in a high‐pass filter application, adjusting the cut‐off frequency of applied alternating voltage analogous to an I‐MOS varactor.</jats:p>

Topics
  • impedance spectroscopy
  • pore
  • surface
  • Carbon
  • extrusion
  • semiconductor
  • positron annihilation lifetime spectroscopy
  • Photoacoustic spectroscopy
  • etching
  • porosity