People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Griggs, Sophie
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Flexible switch matrix addressable electrode arrays with organic electrochemical transistor and pn diode technologycitations
- 2024Enhancing Electrical Conductivity and Power Factor in Poly‐Glycol‐Bithienylthienothiophene with Oligoethylene Glycol Side Chains Through Tris (pentafluorophenyl) Borane Dopingcitations
- 2024Impact of Oligoether Side-Chain Length on the Thermoelectric Properties of a Polar Polythiophenecitations
- 2024The Role Of Side Chains and Hydration on Mixed Charge Transport in N-Type Polymer Films.citations
- 2023Impact of Oligoether Side-Chain Length on the Thermoelectric Properties of a Polar Polythiophenecitations
- 2023A single n-type semiconducting polymer-based photo-electrochemical transistorcitations
- 2022Tuning Organic Electrochemical Transistor Threshold Voltage using Chemically Doped Polymer Gates.citations
- 2022Synthetic nuances to maximize n-type organic electrochemical transistor and thermoelectric performance in fused lactam polymerscitations
- 2022Synthetic Nuances to Maximize n-Type Organic Electrochemical Transistor and Thermoelectric Performance in Fused Lactam Polymers.citations
Places of action
Organizations | Location | People |
---|
article
The Role Of Side Chains and Hydration on Mixed Charge Transport in N-Type Polymer Films.
Abstract
Introducing ethylene glycol (EG) side chains to a conjugated polymer backbone is a well-established synthetic strategy for designing organic mixed ion-electron conductors (OMIECs). However, the impact that film swelling has on mixed conduction properties has yet to be scoped, particularly for electron-transporting (n-type) OMIECs. Here, we investigate the effect of the length of branched EG chains on mixed charge transport of n-type OMIECs based on a naphthalene-1,4,5,8-tetracarboxylic-diimide-bithiophene backbone. We use atomic force microscopy, grazing-incidence wide-angle X-ray scattering (GIWAXS), and scanning tunneling microscopy to establish the similarities between the common-backbone films in dry conditions. Electrochemical quartz crystal microbalance with dissipation monitori1ng (EQCM-D) and in situ GIWAXS measurements reveal stark changes in film swelling properties and microstructure during electrochemical doping, depending on the side chain length. We find that even in the loss of the crystallite content upon contact with the aqueous electrolyte, the films can effectively transport charges and that it is rather the high water content that harms the electronic interconnectivity within the OMIEC films. These results highlight the importance of controlling water uptake in the films to impede the charge transport in n-type electrochemical devices. This article is protected by copyright. All rights reserved.