People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bellani, Sebastiano
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Stainless Steel Activation for Efficient Alkaline Oxygen Evolution in Advanced Electrolyzerscitations
- 2024Engineering of perovskite/electron-transporting layer interface with transition metal chalcogenides for improving the performance of inverted perovskite solar cellscitations
- 2024Venice’s macroalgae-derived active material for aqueous, organic, and solid-state supercapacitorscitations
- 2024Coexistence of Redox‐Active Metal and Ligand Sites in Copper‐based 2D Conjugated Metal‐Organic Frameworks for Battery‐Supercapacitor hybrid systemscitations
- 2023Water‐based supercapacitors with amino acid electrolytes: a green perspective for capacitance enhancementcitations
- 2023Influence of Ion Diffusion on the Lithium-Oxygen Electrochemical Process and Battery Application Using Carbon Nanotubes-Graphene Substratecitations
- 2022Enhancing charge extraction in inverted perovskite solar cells contacts <i>via</i> ultrathin graphene:fullerene composite interlayerscitations
- 2022Carbon-α-Fe2O3 Composite Active Material for High-Capacity Electrodes with High Mass Loading and Flat Current Collector for Quasi-Symmetric Supercapacitorscitations
- 2021Inverted perovskite solar cells with enhanced lifetime and thermal stability enabled by a metallic tantalum disulfide buffer layercitations
- 2020Microwave-Induced Structural Engineering and Pt Trapping in 6R-TaS2 for the Hydrogen Evolution Reactioncitations
- 2020Production and processing of graphene and related materials
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materials
- 2020Production and processing of graphene and related materialscitations
- 2019Scalable Production of Graphene Inks via Wet‐Jet Milling Exfoliation for Screen‐Printed Micro‐Supercapacitorscitations
- 2019Extending the Colloidal Transition Metal Dichalcogenide Library to ReS2 Nanosheets for Application in Gas Sensing and Electrocatalysiscitations
- 2018Graphene-engineered automated sprayed mesoscopic structure for perovskite device scaling-upcitations
- 2017Stabilizing organic photocathodes by low-temperature atomic layer deposition of TiO<sub>2</sub>citations
Places of action
Organizations | Location | People |
---|
article
Stainless Steel Activation for Efficient Alkaline Oxygen Evolution in Advanced Electrolyzers
Abstract
<jats:title>Abstract</jats:title><jats:p>Designing robust and cost‐effective electrocatalysts for efficient alkaline oxygen evolution reaction (OER) is of great significance in the field of water electrolysis. In this study, an electrochemical strategy to activate stainless steel (SS) electrodes for efficient OER is introduced. By cycling the SS electrode within a potential window that encompasses the Fe(II)↔Fe(III) process, its OER activity can be enhanced to a great extent compared to using a potential window that excludes this redox reaction, decreasing the overpotential at current density of 100 mA cm<jats:sup>−2</jats:sup> by 40 mV. Electrochemical characterization, Inductively Coupled Plasma – Optical Emission Spectroscopy, and <jats:italic>operando</jats:italic> Raman measurements demonstrate that the Fe leaching at the SS surface can be accelerated through a Fe → γ‐Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> → Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> or FeO → Fe<jats:sup>2+</jats:sup> (aq.) conversion process, leading to the sustained exposure of Cr and Ni species. While Cr leaching occurs during its oxidation process, Ni species display higher resistance to leaching and gradually accumulate on the SS surface in the form of OER‐active Fe‐incorporated NiOOH species. Furthermore, a potential‐pulse strategy is also introduced to regenerate the OER‐activity of 316‐type SS for stable OER, both in the three‐electrode configuration (without performance decay after 300 h at 350 mA cm<jats:sup>−2</jats:sup>) and in an alkaline water electrolyzer (≈30 mV cell voltage increase after accelerated stress test‐AST). The AST‐stabilized cell can still reach 1000 and 4000 mA cm<jats:sup>−2</jats:sup> at cell voltages of 1.69 and 2.1 V, which makes it competitive with state‐of‐the‐art electrolyzers based on ion‐exchange membrane using Ir‐based anodes.</jats:p>