Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Park, Wongyoung

  • Google
  • 1
  • 9
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Mechanically Robust Self‐Organized Crack‐Free Nanocellular Graphene with Outstanding Electrochemical Properties in Sodium Ion Battery11citations

Places of action

Chart of shared publication
Ogawa, Kazuhiro
1 / 6 shared
Kato, Hidemi
1 / 26 shared
Ichikawa, Yuji
1 / 7 shared
Kim, Hyoung Seop
1 / 16 shared
Chen, Mingwei
1 / 2 shared
Joo, Soohyun
1 / 1 shared
Moon, Jongun
1 / 5 shared
Han, Jiuhui
1 / 2 shared
Wada, Takeshi
1 / 13 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Ogawa, Kazuhiro
  • Kato, Hidemi
  • Ichikawa, Yuji
  • Kim, Hyoung Seop
  • Chen, Mingwei
  • Joo, Soohyun
  • Moon, Jongun
  • Han, Jiuhui
  • Wada, Takeshi
OrganizationsLocationPeople

article

Mechanically Robust Self‐Organized Crack‐Free Nanocellular Graphene with Outstanding Electrochemical Properties in Sodium Ion Battery

  • Ogawa, Kazuhiro
  • Kato, Hidemi
  • Ichikawa, Yuji
  • Kim, Hyoung Seop
  • Chen, Mingwei
  • Joo, Soohyun
  • Moon, Jongun
  • Han, Jiuhui
  • Park, Wongyoung
  • Wada, Takeshi
Abstract

<jats:title>Abstract</jats:title><jats:p>Crack‐free nanocellular graphenes are attractive materials with extraordinary mechanical and electrochemical properties, but their homogeneous synthesis on the centimeter scale is challenging. Here, a strong nanocellular graphene film achieved by the self‐organization of carbon atoms using liquid metal dealloying and employing a defect‐free amorphous precursor is reported. This study demonstrates that a Bi melt strongly catalyzes the self‐structuring of graphene layers at low processing temperatures. The robust nanoarchitectured graphene displays a high‐genus seamless framework and exhibits remarkable tensile strength (34.8 MPa) and high electrical conductivity (1.6 × 10<jats:sup>4</jats:sup> S m<jats:sup>−1</jats:sup>). This unique material has excellent potential for flexible and high‐rate sodium‐ion battery applications.</jats:p>

Topics
  • impedance spectroscopy
  • amorphous
  • Carbon
  • melt
  • crack
  • strength
  • Sodium
  • tensile strength
  • electrical conductivity