Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Qiu, Xinkai

  • Google
  • 9
  • 65
  • 713

University of Cambridge

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Enhancing the conductivity and thermoelectric performance of semicrystalline conducting polymers through controlled tie chain incorporation6citations
  • 2024Enhancing the Conductivity and Thermoelectric Performance of Semicrystalline Conducting Polymers through Controlled Tie Chain Incorporation.citations
  • 2021Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectrics123citations
  • 2021Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectrics123citations
  • 2020N-type organic thermoelectrics:demonstration of ZT > 0.3153citations
  • 2020N-type organic thermoelectrics153citations
  • 20191,8-diiodooctane acts as a photo-acid in organic solar cells69citations
  • 20191,8-diiodooctane acts as a photo-acid in organic solar cells69citations
  • 2018Soft Nondamaging Contacts Formed from Eutectic Ga-In for the Accurate Determination of Dielectric Constants of Organic Materials17citations

Places of action

Chart of shared publication
Jacobs, Ie
1 / 3 shared
Wood, William
2 / 5 shared
Ren, Xinglong
2 / 6 shared
Midgley, Paul, A.
1 / 2 shared
He, Qiao
2 / 5 shared
Mcneill, Cr
1 / 7 shared
Zhu, Wenjin
2 / 4 shared
Wang, Zichen
2 / 3 shared
Vacek, Petr
2 / 7 shared
Sirringhaus, Henning
2 / 48 shared
Martin, Jaime
2 / 13 shared
Un, Hioleng
1 / 1 shared
Freychet, Guillaume
2 / 8 shared
Zhang, Youcheng
2 / 8 shared
Xiao, Mingfei
2 / 7 shared
Laulainen, Joonatan, E. M.
1 / 1 shared
Qu, Zhengkang
2 / 2 shared
Tjhe, Dion
2 / 4 shared
Heeney, Martin
2 / 14 shared
Asatryan, Jesika
2 / 6 shared
Jacobs, Ian E.
1 / 5 shared
Midgley, Paul A.
1 / 27 shared
Un, Hio-Leng
1 / 1 shared
Laulainen, Joonatan Em
1 / 3 shared
Mcneill, Christopher R.
1 / 15 shared
Baran, Derya
4 / 11 shared
Villalva, Diego Rosas
2 / 2 shared
Chiechi, Ryan C.
3 / 13 shared
Sami, Selim
2 / 4 shared
Havenith, Remco W. A.
4 / 22 shared
Dong, Jingjin
4 / 15 shared
Nugraha, Mohamad Insan
2 / 6 shared
Sun, Hengda
2 / 8 shared
Koster, L. Jan Anton
2 / 23 shared
Koopmans, Marten
2 / 8 shared
Yao, Chen
2 / 2 shared
Yang, Xuwen
2 / 2 shared
Anthopoulos, Thomas D.
4 / 33 shared
Potgieser, Hinderikus G. O.
2 / 2 shared
Portale, Giuseppe
2 / 33 shared
Liu, Jian
4 / 26 shared
Ye, Gang
2 / 6 shared
Fabiano, Simone
2 / 34 shared
Koster, Lja
3 / 32 shared
Portale, Giuseppe, A.
2 / 57 shared
Alessandri, Riccardo
1 / 3 shared
Marrink, Siewert J.
1 / 4 shared
Rousseva, Sylvia
2 / 7 shared
Qiu, Li
2 / 6 shared
Hummelen, Jan C.
2 / 18 shared
Nugraha, Mohamad I.
2 / 3 shared
Klasen, Nathalie
2 / 2 shared
Caironi, Mario
2 / 15 shared
Barker, Alex J.
2 / 7 shared
Marrink, Siewert
1 / 3 shared
Hummelen, Jan
1 / 10 shared
Zee, Bas Van Der
1 / 2 shared
Minnaard, Adriaan
2 / 2 shared
Wang, Gongbao
2 / 4 shared
Koster, Lambert
1 / 2 shared
Doumon, Nutifafa Y.
1 / 3 shared
Chiechi, Ryan
1 / 3 shared
Kooistra, Floris B.
1 / 4 shared
Douvogianni, Evgenia
1 / 4 shared
Jahani, Fatemeh
1 / 5 shared
Chart of publication period
2024
2021
2020
2019
2018

Co-Authors (by relevance)

  • Jacobs, Ie
  • Wood, William
  • Ren, Xinglong
  • Midgley, Paul, A.
  • He, Qiao
  • Mcneill, Cr
  • Zhu, Wenjin
  • Wang, Zichen
  • Vacek, Petr
  • Sirringhaus, Henning
  • Martin, Jaime
  • Un, Hioleng
  • Freychet, Guillaume
  • Zhang, Youcheng
  • Xiao, Mingfei
  • Laulainen, Joonatan, E. M.
  • Qu, Zhengkang
  • Tjhe, Dion
  • Heeney, Martin
  • Asatryan, Jesika
  • Jacobs, Ian E.
  • Midgley, Paul A.
  • Un, Hio-Leng
  • Laulainen, Joonatan Em
  • Mcneill, Christopher R.
  • Baran, Derya
  • Villalva, Diego Rosas
  • Chiechi, Ryan C.
  • Sami, Selim
  • Havenith, Remco W. A.
  • Dong, Jingjin
  • Nugraha, Mohamad Insan
  • Sun, Hengda
  • Koster, L. Jan Anton
  • Koopmans, Marten
  • Yao, Chen
  • Yang, Xuwen
  • Anthopoulos, Thomas D.
  • Potgieser, Hinderikus G. O.
  • Portale, Giuseppe
  • Liu, Jian
  • Ye, Gang
  • Fabiano, Simone
  • Koster, Lja
  • Portale, Giuseppe, A.
  • Alessandri, Riccardo
  • Marrink, Siewert J.
  • Rousseva, Sylvia
  • Qiu, Li
  • Hummelen, Jan C.
  • Nugraha, Mohamad I.
  • Klasen, Nathalie
  • Caironi, Mario
  • Barker, Alex J.
  • Marrink, Siewert
  • Hummelen, Jan
  • Zee, Bas Van Der
  • Minnaard, Adriaan
  • Wang, Gongbao
  • Koster, Lambert
  • Doumon, Nutifafa Y.
  • Chiechi, Ryan
  • Kooistra, Floris B.
  • Douvogianni, Evgenia
  • Jahani, Fatemeh
OrganizationsLocationPeople

article

Enhancing the conductivity and thermoelectric performance of semicrystalline conducting polymers through controlled tie chain incorporation

  • Jacobs, Ie
  • Wood, William
  • Ren, Xinglong
  • Qiu, Xinkai
  • Midgley, Paul, A.
  • He, Qiao
  • Mcneill, Cr
  • Zhu, Wenjin
  • Wang, Zichen
  • Vacek, Petr
  • Sirringhaus, Henning
  • Martin, Jaime
  • Un, Hioleng
  • Freychet, Guillaume
  • Zhang, Youcheng
  • Xiao, Mingfei
  • Laulainen, Joonatan, E. M.
  • Qu, Zhengkang
  • Tjhe, Dion
  • Heeney, Martin
  • Asatryan, Jesika
Abstract

International audience ; Conjugated polymers are promising materials for thermoelectric applications, however, at present few effective and well-understood strategies exist to further advance their thermoelectric performance. Here a new model system is reported for a better understanding of the key factors governing their thermoelectric properties: aligned, ribbon-phase poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) doped by ion-exchange doping. Using a range of microstructural and spectroscopic methods, the effect of controlled incorporation of tie-chains between the crystalline domains is studied through blending of high and low molecular weight chains. The tie chains provide efficient transport pathways between crystalline domains and lead to significantly enhanced electrical conductivity of 4810 S cm -1 , which is not accompanied by a reduction in Seebeck coefficient or a large increase in thermal conductivity. Respectable power factors of 173 μW m -1 K -2 are demonstrated in this model system. The approach is generally applicable to a wide range of semicrystalline conjugated polymers and could provide an effective pathway for further enhancing their thermoelectric properties and overcome traditional trade-offs in optimization of thermoelectric performance.

Topics
  • impedance spectroscopy
  • polymer
  • phase
  • molecular weight
  • thermal conductivity
  • electrical conductivity
  • aligned
  • semicrystalline