People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Qiu, Xinkai
University of Cambridge
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Enhancing the conductivity and thermoelectric performance of semicrystalline conducting polymers through controlled tie chain incorporationcitations
- 2024Enhancing the Conductivity and Thermoelectric Performance of Semicrystalline Conducting Polymers through Controlled Tie Chain Incorporation.
- 2021Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectricscitations
- 2021Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectricscitations
- 2020N-type organic thermoelectrics:demonstration of ZT > 0.3citations
- 2020N-type organic thermoelectricscitations
- 20191,8-diiodooctane acts as a photo-acid in organic solar cellscitations
- 20191,8-diiodooctane acts as a photo-acid in organic solar cellscitations
- 2018Soft Nondamaging Contacts Formed from Eutectic Ga-In for the Accurate Determination of Dielectric Constants of Organic Materialscitations
Places of action
Organizations | Location | People |
---|
article
Enhancing the conductivity and thermoelectric performance of semicrystalline conducting polymers through controlled tie chain incorporation
Abstract
International audience ; Conjugated polymers are promising materials for thermoelectric applications, however, at present few effective and well-understood strategies exist to further advance their thermoelectric performance. Here a new model system is reported for a better understanding of the key factors governing their thermoelectric properties: aligned, ribbon-phase poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) doped by ion-exchange doping. Using a range of microstructural and spectroscopic methods, the effect of controlled incorporation of tie-chains between the crystalline domains is studied through blending of high and low molecular weight chains. The tie chains provide efficient transport pathways between crystalline domains and lead to significantly enhanced electrical conductivity of 4810 S cm -1 , which is not accompanied by a reduction in Seebeck coefficient or a large increase in thermal conductivity. Respectable power factors of 173 μW m -1 K -2 are demonstrated in this model system. The approach is generally applicable to a wide range of semicrystalline conjugated polymers and could provide an effective pathway for further enhancing their thermoelectric properties and overcome traditional trade-offs in optimization of thermoelectric performance.