People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Masania, Kunal
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 20243D Printing of Lead-Free Piezoelectric Ultrasound Transducers
- 2024Engineered living composite materialscitations
- 20233D Printing of Flow-Inspired Anisotropic Patterns with Liquid Crystalline Polymerscitations
- 2022Three-dimensional printing of mycelium hydrogels into living complex materialscitations
- 2022Light-Based Printing of Leachable Salt Molds for Facile Shaping of Complex Structurescitations
- 20213D Printed Scaffolds for Monolithic Aerogel Photocatalysts with Complex Geometriescitations
- 2021High-performance all-bio-based laminates derived from delignified woodcitations
- 2021Experimental and numerical investigation of ply size effects of steel foil reinforced compositescitations
- 2020Bio-Inspired Platelet-Reinforced Polymers with Enhanced Stiffness and Damping Behaviorcitations
- 2019Tunable wood by reversible interlocking and bioinspired mechanical gradientscitations
- 2019Fabrication of flax fibre-reinforced cellulose propionate thermoplastic compositescitations
- 2019Damping behaviour of bio-inspired natural fibre composites
- 2019Delignified wood–polymer interpenetrating composites exceeding the rule of mixturescitations
- 2019Tunable Wood by Reversible Interlocking and Bioinspired Mechanical Gradientscitations
- 2019Densified cellulose materials and delignified wood reinforced composites
- 2019Quantifying the role of mineral bridges on the fracture resistance of nacre-like composites
- 2018Predicting the adhesion strength of thermoplastic/glass interfaces from wetting measurementscitations
- 2018Interfacial interactions in bicomponent polymer fiberscitations
- 2018Three-dimensional printing of hierarchical liquid-crystal-polymer structurescitations
- 2018Local reinforcement of aerospace structures using co-curing RTM of metal foil hybrid compositescitations
- 2018The fracture of thermosetting epoxy polymers containing silica nanoparticlescitations
- 2017Damping of carbon fibre and flax fibre angle-ply composite laminatescitations
- 2017Wettability and interphase adhesion of molten thermoplastics on glass fibres
- 2017The fracture of thermosetting polymers containing silica nanoparticles
- 2017Mineral Nano-Interconnectivity Stiffens and Toughens Nacre-like Composite Materialscitations
- 2017Rheological modelling of thermoset composite processingcitations
- 2016Damping of carbon fibre and flax fibre reinforced angle ply polymers
- 2016Mechanical properties of tough plasma treated flax fibre thermoplastic composites
- 2016Effect of fibre volume content on the mechanical performance of natural fibre reinforced thermoplastic composites
- 2015Experimental study of the stress transfer in discontinuous composites on the basis of a unit cell model
- 2015Steel foil reinforced composites
- 2015A process modeling toolkit developed to address scale-up challenges of out-of-autoclave manufacturing
- 2011Toughening of epoxy using core-shell particlescitations
- 2008The fracture of glass-fibre-reinforced epoxy composites using nanoparticle-modified matricescitations
Places of action
Organizations | Location | People |
---|
article
3D Printing of Flow-Inspired Anisotropic Patterns with Liquid Crystalline Polymers
Abstract
Anisotropic materials formed by living organisms possess remarkable mechanical properties due to their intricate microstructure and directional freedom. In contrast, human-made materials face challenges in achieving similar levels of directionality due to material and manufacturability constraints. To overcome these limitations, an approach using 3D printing of self-assembling thermotropic liquid crystal polymers (LCPs) is presented. Their high stiffness and strength is granted by nematic domains aligning during the extrusion process. Here, a remarkably wide range of Young's modulus from 3 to 40 GPa is obtained during by utilizing directionality of the nematic flow during the printing process. By determining a relationship between stiffness, nozzle diameter, and line width, a design space where shaping and mechanical performance can be combined is identified. The ability to print LCPs with on-the-fly width changes to accommodate arbitrary spatially varying directions is demonstrated. This unlocks the possibility to manufacture exquisite patterns inspired by fluid dynamics with steep curvature variations. Utilizing the synergy between this path-planning method and LCPs, functional objects with stiffness and curvature gradients can be 3D-printed, offering potential applications in lightweight sustainable structures embedding crack-mitigation strategies. This method also opens avenues for studying and replicating intricate patterns observed in nature, such as wood or turbulent flow using 3D printing. ; Aerospace Manufacturing Technologies ; Group Peeters ; Group Masania