People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Freiberg, Katharina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Volcanic Eruption in the Nanoworld: Efficient Oxygen Exchange at the Si/SnO<sub>2</sub> Interface
- 2024Thermodynamically Guided Improvement of Fe–Mn–Al–Ni Shape‐Memory Alloyscitations
- 2024Crystalline Microstructure, Microsegregations, and Mechanical Properties of Inconel 718 Alloy Samples Processed in Electromagnetic Levitation Facilitycitations
- 2024Crystalline microstructure, microsegregations and mechanical properties of Inconel 718 alloy samples processed in electromagnetic levitation facilitycitations
- 2023Effect of Co vs. Fe content on early stages of oxidation of Co-Cr-Fe-Mn-Ni-Si complex concentrated alloys at 800 °Ccitations
- 2023Modelling of the Solidifying Microstructure of Inconel 718citations
- 2023Modelling of the Solidifying Microstructure of Inconel 718: Quasi-Binary Approximationcitations
- 2023Modelling of the Solidifying Microstructure of Inconel 718:Quasi-Binary Approximationcitations
- 2021Single Femtosecond Laser-Pulse-Induced Superficial Amorphization and Re-Crystallization of Siliconcitations
Places of action
Organizations | Location | People |
---|
article
Thermodynamically Guided Improvement of Fe–Mn–Al–Ni Shape‐Memory Alloys
Abstract
A microstructural informed thermodynamic model is utilized to tailor the pseudoelastic performance of a series of Fe–Mn–Al–Ni shape‐memory alloys. Following this approach, the influence of the stability and the amount of the B 2‐ordered precipitates on the stability of the austenitic state and the pseudoelastic response is revealed. This is assessed by a combination of complementary nanoindentation measurements and incremental‐strain tests under compressive loading. Based on these investigations, the applicability of the proposed models for the prediction of shape‐memory capabilities of Fe–Mn–Al–Ni alloys is confirmed. Eventually, these thermodynamic considerations enable the guided enhancement of functional properties in this alloy system through the direct design of alloy compositions. The procedure proposed renders a significant advancement in the field of shape‐memory alloys.