Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Golovanova, Viktoria

  • Google
  • 4
  • 30
  • 290

Institute of Photonic Sciences

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Water-hydroxide trapping in cobalt tungstate for proton exchange membrane water electrolysis137citations
  • 2024Water-hydroxide trapping in cobalt tungstate for proton exchange membrane water electrolysis137citations
  • 2023Direct operando visualization of metal support interactions induced by hydrogen spillover during CO2 hydrogenation8citations
  • 2023Direct Operando Visualization of Metal Support Interactions Induced by Hydrogen Spillover During CO2 Hydrogenation8citations

Places of action

Chart of shared publication
Arbiol, Jordi
3 / 57 shared
Dimitropoulos, Marinos
2 / 4 shared
Benzidi, Hind
2 / 3 shared
Aparna, M. Das
2 / 2 shared
Pinilla-Sánchez, Adrián
2 / 2 shared
Garcia De Arquer, F. Pelayo
1 / 1 shared
Llorens Rauret, David
2 / 3 shared
Manjón, Alba Garzón
1 / 2 shared
Mundet, Bernat
2 / 26 shared
Giménez, Sixto
1 / 5 shared
Pastor, Ernest
2 / 3 shared
Celorrio, Verónica
2 / 14 shared
Ram, Ranit
2 / 2 shared
Guha, Anku
2 / 2 shared
Sanz Berman, Pol
2 / 2 shared
Mesa, Camilo
1 / 1 shared
Xia, Lu
2 / 5 shared
López, Núria
1 / 3 shared
Lopez, Nuria
1 / 2 shared
Gimenez, Sixto
1 / 3 shared
Mesa, Camilo A.
1 / 4 shared
García De Arquer, F. Pelayo
1 / 2 shared
Garzón-Manjón, Alba
1 / 7 shared
Jenkinson, Kellie
2 / 6 shared
Spadaro, Maria Chiara
2 / 24 shared
Morante, Joan Ramón
1 / 4 shared
Andreu, Teresa
2 / 9 shared
Bals, Sara
2 / 93 shared
Jordi, Arbiol I. Cobos
1 / 43 shared
Morante, Joan Ramon
1 / 11 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Arbiol, Jordi
  • Dimitropoulos, Marinos
  • Benzidi, Hind
  • Aparna, M. Das
  • Pinilla-Sánchez, Adrián
  • Garcia De Arquer, F. Pelayo
  • Llorens Rauret, David
  • Manjón, Alba Garzón
  • Mundet, Bernat
  • Giménez, Sixto
  • Pastor, Ernest
  • Celorrio, Verónica
  • Ram, Ranit
  • Guha, Anku
  • Sanz Berman, Pol
  • Mesa, Camilo
  • Xia, Lu
  • López, Núria
  • Lopez, Nuria
  • Gimenez, Sixto
  • Mesa, Camilo A.
  • García De Arquer, F. Pelayo
  • Garzón-Manjón, Alba
  • Jenkinson, Kellie
  • Spadaro, Maria Chiara
  • Morante, Joan Ramón
  • Andreu, Teresa
  • Bals, Sara
  • Jordi, Arbiol I. Cobos
  • Morante, Joan Ramon
OrganizationsLocationPeople

article

Direct operando visualization of metal support interactions induced by hydrogen spillover during CO2 hydrogenation

  • Golovanova, Viktoria
  • Arbiol, Jordi
  • Jenkinson, Kellie
  • Spadaro, Maria Chiara
  • Morante, Joan Ramón
  • Andreu, Teresa
  • Bals, Sara
Abstract

The understanding of catalyst active sites is a fundamental challenge for the future rational design of optimized and bespoke catalysts. For instance, the partial reduction of Ce4+ surface sites to Ce3+ and the formation of oxygen vacancies are critical for CO2 hydrogenation, CO oxidation, and the water gas shift reaction. Furthermore, metal nanoparticles, the reducible support, and metal support interactions are prone to evolve under reaction conditions; therefore a catalyst structure must be characterized under operando conditions to identify active states and deduce structure-activity relationships. In the present work, temperature-induced morphological and chemical changes in Ni nanoparticle-decorated mesoporous CeO2 by means of in situ quantitative multimode electron tomography and in situ heating electron energy loss spectroscopy, respectively, are investigated. Moreover, operando electron energy loss spectroscopy is employed using a windowed gas cell and reveals the role of Ni-induced hydrogen spillover on active Ce3+ site formation and enhancement of the overall catalytic performance. ; K.J. and S.B. acknowledge funding from ERC Consolidator Grant #815128 – REALNANO and European Union's Horizon 2020 research and innovation program under grant agreement #823717 – ESTEEM3. The authors want to acknowledge Dr. Wiebke Albreacht and Prof. dr. Thomas Altantzis for their contribution to discussions and initial experimentation. ICN2 and IREC acknowledge funding from Generalitat de Catalunya 2021SGR00457 and 2021SGR01581, respectively. This study is part of the Advanced Materials programme and was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and by Generalitat de Catalunya. The authors thank support from the projects PID2019-108136RB-C33, PID2020-116093RB-C42, and -C43, funded by MCIN/ AEI/10.13039/501100011033/ and by “ERDF A way of making Europe”, by the “European Union”. ICN2 is supported by the Severo Ochoa program from Spanish MCIN / AEI (Grant No.: CEX 21-001214-S). ICN2 ...

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • Oxygen
  • tomography
  • Hydrogen
  • electron energy loss spectroscopy