Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Heng, Jia Yong

  • Google
  • 1
  • 18
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024How Photogenerated I2 Induces I-Rich Phase Formation in Lead Mixed Halide Perovskites24citations

Places of action

Chart of shared publication
Petrozza, Annamaria
1 / 28 shared
Prato, Mirko
1 / 45 shared
Gao, Feng
1 / 39 shared
Zhao, Ni
1 / 3 shared
Poli, Isabella
1 / 10 shared
Jiménez-López, Jesús
1 / 2 shared
Treglia, Antonella
1 / 7 shared
Martani, Samuele
1 / 7 shared
Gregori, Luca
1 / 13 shared
Meggiolaro, Daniele
1 / 27 shared
Wong, E. Laine
1 / 8 shared
Laar, Simone C. W. Van
1 / 2 shared
Wang, Feng
1 / 20 shared
Zhou, Yang
1 / 6 shared
Angelis, Filippo De
1 / 30 shared
Cortecchia, Daniele
1 / 13 shared
Janssen, René A. J.
1 / 151 shared
Kobera, Libor
1 / 8 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Petrozza, Annamaria
  • Prato, Mirko
  • Gao, Feng
  • Zhao, Ni
  • Poli, Isabella
  • Jiménez-López, Jesús
  • Treglia, Antonella
  • Martani, Samuele
  • Gregori, Luca
  • Meggiolaro, Daniele
  • Wong, E. Laine
  • Laar, Simone C. W. Van
  • Wang, Feng
  • Zhou, Yang
  • Angelis, Filippo De
  • Cortecchia, Daniele
  • Janssen, René A. J.
  • Kobera, Libor
OrganizationsLocationPeople

article

How Photogenerated I2 Induces I-Rich Phase Formation in Lead Mixed Halide Perovskites

  • Petrozza, Annamaria
  • Prato, Mirko
  • Heng, Jia Yong
  • Gao, Feng
  • Zhao, Ni
  • Poli, Isabella
  • Jiménez-López, Jesús
  • Treglia, Antonella
  • Martani, Samuele
  • Gregori, Luca
  • Meggiolaro, Daniele
  • Wong, E. Laine
  • Laar, Simone C. W. Van
  • Wang, Feng
  • Zhou, Yang
  • Angelis, Filippo De
  • Cortecchia, Daniele
  • Janssen, René A. J.
  • Kobera, Libor
Abstract

<p>Bandgap tunability of lead mixed halide perovskites (LMHPs) is a crucial characteristic for versatile optoelectronic applications. Nevertheless, LMHPs show the formation of iodide-rich (I-rich) phase under illumination, which destabilizes the semiconductor bandgap and impedes their exploitation. Here, it is shown that how I<sub>2</sub>, photogenerated upon charge carrier trapping at iodine interstitials in LMHPs, can promote the formation of I-rich phase. I<sub>2</sub> can react with bromide (Br<sup>−</sup>) in the perovskite to form a trihalide ion I<sub>2</sub>Br<sup>−</sup> (I<sup>δ−</sup>-I<sup>δ+</sup>-Br<sup>δ−</sup>), whose negatively charged iodide (I<sup>δ−</sup>) can further exchange with another lattice Br<sup>−</sup> to form the I-rich phase. Importantly, it is observed that the effectiveness of the process is dependent on the overall stability of the crystalline perovskite structure. Therefore, the bandgap instability in LMHPs is governed by two factors, i.e., the density of native defects leading to I<sub>2</sub> production and the Br<sup>−</sup> binding strength within the crystalline unit. Eventually, this study provides rules for the design of chemical composition in LMHPs to reach their full potential for optoelectronic devices.</p>

Topics
  • density
  • perovskite
  • impedance spectroscopy
  • phase
  • semiconductor
  • strength
  • chemical composition
  • interstitial