People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Jing
CEA LETI
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Interfacial spin-orbitronic effects controlled with different oxidation levels at the Co|Al interface
- 2024Atomic‐Layer Controlled Transition from Inverse Rashba–Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe<sub>2</sub> Probed by THz Spintronic Emissioncitations
- 2024The influence of Sb/Te ratio on the crystallization dynamic of GeSbTe alloys
- 2022Application of Thermal Spray Coatings in Electrolysers for Hydrogen Productioncitations
- 2022Application of thermal spray coatings in electrolysers for hydrogen production: advances, challenges, and opportunities.citations
- 2022Application of thermal spray coatings in electrolysers for hydrogen production: advances, challenges, and opportunitiescitations
- 2022Application of Thermal Spray Coatings in Electrolysers for Hydrogen Production : Advances, Challenges, and Opportunitiescitations
- 2021Nd3+doped- SiO2–KLaF4 oxyfluoride glass-ceramics prepared by sol-gelcitations
- 2021Nd3+doped- SiO2–KLaF4 oxyfluoride glass-ceramics prepared by sol-gelcitations
- 2021Crystallization Process and Site-Selective Excitation of Nd3+ in LaF3/NaLaF4 Sol–Gel-Synthesized Transparent Glass-Ceramicscitations
- 2021Crystallization process and site-selective excitation of Nd3+ in LaF3/NaLaF4 sol–gel-synthesized transparent glass-ceramicscitations
- 2020Implementation of the UNIQUAC model in the OpenCalphad softwarecitations
- 2016Theoretical investigation of the phonon-limited carrier mobility in (001) Si filmscitations
- 2006Electrical properties of epoxy resin based nano-compositescitations
Places of action
Organizations | Location | People |
---|
article
Atomic‐Layer Controlled Transition from Inverse Rashba–Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe<sub>2</sub> Probed by THz Spintronic Emission
Abstract
<jats:title>Abstract</jats:title><jats:p>2D materials, such as transition metal dichalcogenides, are ideal platforms for spin‐to‐charge conversion (SCC) as they possess strong spin–orbit coupling (SOC), reduced dimensionality and crystal symmetries as well as tuneable band structure, compared to metallic structures. Moreover, SCC can be tuned with the number of layers, electric field, or strain. Here, SCC in epitaxially grown 2D PtSe<jats:sub>2</jats:sub> by THz spintronic emission is studied since its 1T crystal symmetry and strong SOC favor SCC. High quality of as‐grown PtSe<jats:sub>2</jats:sub> layers is demonstrated, followed by in situ ferromagnet deposition by sputtering that leaves the PtSe<jats:sub>2</jats:sub> unaffected, resulting in well‐defined clean interfaces as evidenced with extensive characterization. Through this atomic growth control and using THz spintronic emission, the unique thickness‐dependent electronic structure of PtSe<jats:sub>2</jats:sub> allows the control of SCC. Indeed, the transition from the inverse Rashba–Edelstein effect (IREE) in 1–3 monolayers (ML) to the inverse spin Hall effect (ISHE) in multilayers (>3 ML) of PtSe<jats:sub>2</jats:sub> enabling the extraction of the perpendicular spin diffusion length and relative strength of IREE and ISHE is demonstrated. This band structure flexibility makes PtSe<jats:sub>2</jats:sub> an ideal candidate to explore the underlying mechanisms and engineering of the SCC as well as for the development of tuneable THz spintronic emitters.</jats:p>