People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mangeney, Juliette
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Atomic‐Layer Controlled Transition from Inverse Rashba–Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe<sub>2</sub> Probed by THz Spintronic Emissioncitations
- 2023Spin-momentum locking and ultrafast spin-charge conversion in ultrathin epitaxial Bi 1−x Sb x topological insulatorcitations
- 2023Atomic-layer controlled THz Spintronic emission from Epitaxially grown Two dimensional PtSe$_2$/ferromagnet heterostructures
- 2023Layer‐controlled nonlinear terahertz valleytronics in two‐dimensional semimetal and semiconductor PtSe 2citations
- 2023Spin‐Momentum Locking and Ultrafast Spin‐Charge Conversion in Ultrathin Epitaxial Bi 1 − x Sb x Topological Insulatorcitations
- 2022Spintronic THz emitters based on transition metals and semi-metals/Pt multilayerscitations
- 2022Ultrafast buildup dynamics of terahertz pulse generation in mode-locked quantum cascade laserscitations
- 2021Spin injection efficiency at metallic interfaces probed by THz emission spectroscopycitations
- 2020Ultrafast spin-currents and charge conversion at 3 d -5 d interfaces probed by time-domain terahertz spectroscopycitations
- 2018High permittivity processed SrTiO3 for metamaterials applications at terahertz frequenciescitations
- 2012Carrier localization in InN/InGaN multiple-quantum wells with high In-contentcitations
Places of action
Organizations | Location | People |
---|
article
Atomic‐Layer Controlled Transition from Inverse Rashba–Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe<sub>2</sub> Probed by THz Spintronic Emission
Abstract
<jats:title>Abstract</jats:title><jats:p>2D materials, such as transition metal dichalcogenides, are ideal platforms for spin‐to‐charge conversion (SCC) as they possess strong spin–orbit coupling (SOC), reduced dimensionality and crystal symmetries as well as tuneable band structure, compared to metallic structures. Moreover, SCC can be tuned with the number of layers, electric field, or strain. Here, SCC in epitaxially grown 2D PtSe<jats:sub>2</jats:sub> by THz spintronic emission is studied since its 1T crystal symmetry and strong SOC favor SCC. High quality of as‐grown PtSe<jats:sub>2</jats:sub> layers is demonstrated, followed by in situ ferromagnet deposition by sputtering that leaves the PtSe<jats:sub>2</jats:sub> unaffected, resulting in well‐defined clean interfaces as evidenced with extensive characterization. Through this atomic growth control and using THz spintronic emission, the unique thickness‐dependent electronic structure of PtSe<jats:sub>2</jats:sub> allows the control of SCC. Indeed, the transition from the inverse Rashba–Edelstein effect (IREE) in 1–3 monolayers (ML) to the inverse spin Hall effect (ISHE) in multilayers (>3 ML) of PtSe<jats:sub>2</jats:sub> enabling the extraction of the perpendicular spin diffusion length and relative strength of IREE and ISHE is demonstrated. This band structure flexibility makes PtSe<jats:sub>2</jats:sub> an ideal candidate to explore the underlying mechanisms and engineering of the SCC as well as for the development of tuneable THz spintronic emitters.</jats:p>