Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rahmanudin, Aiman

  • Google
  • 8
  • 39
  • 93

Linköping University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Stretchable Tissue‐Like Gold Nanowire Composites with Long‐Term Stability for Neural Interfaces3citations
  • 2024Stretchable Tissue-Like Gold Nanowire Composites with Long-Term Stability for Neural Interfaces.citations
  • 2023Tuneable Anisotropic Plasmonics with Shape‐Symmetric Conducting Polymer Nanoantennas9citations
  • 2020Robust High-Capacitance Polymer Gate Dielectrics for Stable Low-Voltage Organic Field-Effect Transistor Sensors38citations
  • 2018Catalyst-Free, Fast, and Tunable Synthesis for Robust Covalent Polymer Network Semiconducting Thin Films8citations
  • 2018Melt-processing of small molecule organic photovoltaics via bulk heterojunction compatibilization8citations
  • 2017Molecular Strategies for Morphology Control in Semiconducting Polymers for Optoelectronics3citations
  • 2017Amorphous Ternary Charge-Cascade Molecules for Bulk Heterojunction Photovoltaics24citations

Places of action

Chart of shared publication
Mohammadi, Mohsen
3 / 14 shared
Persson, Per O. Å.
1 / 22 shared
Boda, Ulrika
2 / 2 shared
Li, Yuyang
2 / 5 shared
Seufert, Laura
2 / 2 shared
Elmahmoudy, Mohammed
2 / 2 shared
Carnicerlombarte, Alejandro
1 / 1 shared
Farnebo, Simon
2 / 2 shared
Theunis, Charlotte
2 / 2 shared
Tybrandt, Klas
3 / 11 shared
Lienemann, Samuel
2 / 4 shared
Donahue, Mary J.
2 / 4 shared
Kroon, Renee
2 / 28 shared
Carnicer-Lombarte, Alejandro
1 / 1 shared
Persson, Per Oå
1 / 1 shared
Jonsson, Magnus P.
1 / 3 shared
Chen, Shangzhi
1 / 5 shared
Kim, Nara
1 / 2 shared
Duan, Yulong
1 / 1 shared
Khan, Raja U.
1 / 1 shared
Faraji, Sheida
1 / 5 shared
Bull, Nicholas
1 / 1 shared
Persaud, Krishna. C.
1 / 1 shared
Gollu, Sankara R.
1 / 2 shared
Tate, Daniel J.
1 / 5 shared
Garlapati, Suresh K.
1 / 1 shared
Zamhuri, Adibah
1 / 1 shared
Marcial-Hernandez, Raymundo
1 / 2 shared
Turner, Michael L.
1 / 7 shared
Jeanbourquin, Xavier A.
3 / 3 shared
Johnson, Melissa
2 / 3 shared
Sivula, Kevin
4 / 5 shared
Guijarro, Nestor
1 / 2 shared
Yao, Liang
3 / 3 shared
Yu, Xiaoyun
2 / 2 shared
Sekar, Arvindh
2 / 3 shared
Ripaud, Emilie
1 / 1 shared
Liu, Yongpeng
1 / 1 shared
Guijarro, Néstor
1 / 1 shared
Chart of publication period
2024
2023
2020
2018
2017

Co-Authors (by relevance)

  • Mohammadi, Mohsen
  • Persson, Per O. Å.
  • Boda, Ulrika
  • Li, Yuyang
  • Seufert, Laura
  • Elmahmoudy, Mohammed
  • Carnicerlombarte, Alejandro
  • Farnebo, Simon
  • Theunis, Charlotte
  • Tybrandt, Klas
  • Lienemann, Samuel
  • Donahue, Mary J.
  • Kroon, Renee
  • Carnicer-Lombarte, Alejandro
  • Persson, Per Oå
  • Jonsson, Magnus P.
  • Chen, Shangzhi
  • Kim, Nara
  • Duan, Yulong
  • Khan, Raja U.
  • Faraji, Sheida
  • Bull, Nicholas
  • Persaud, Krishna. C.
  • Gollu, Sankara R.
  • Tate, Daniel J.
  • Garlapati, Suresh K.
  • Zamhuri, Adibah
  • Marcial-Hernandez, Raymundo
  • Turner, Michael L.
  • Jeanbourquin, Xavier A.
  • Johnson, Melissa
  • Sivula, Kevin
  • Guijarro, Nestor
  • Yao, Liang
  • Yu, Xiaoyun
  • Sekar, Arvindh
  • Ripaud, Emilie
  • Liu, Yongpeng
  • Guijarro, Néstor
OrganizationsLocationPeople

article

Tuneable Anisotropic Plasmonics with Shape‐Symmetric Conducting Polymer Nanoantennas

  • Jonsson, Magnus P.
  • Mohammadi, Mohsen
  • Chen, Shangzhi
  • Rahmanudin, Aiman
  • Kim, Nara
  • Duan, Yulong
  • Tybrandt, Klas
Abstract

A wide range of nanophotonic applications rely on polarization-dependent plasmonic resonances, which usually requires metallic nanostructures that have anisotropic shape. This work demonstrates polarization-dependent plasmonic resonances instead by breaking symmetry via material permittivity. The study shows that molecular alignment of a conducting polymer can lead to a material with polarization-dependent plasma frequency and corresponding in-plane hyperbolic permittivity region. This result is not expected based only on anisotropic charge mobility but implies that also the effective mass of the charge carriers becomes anisotropic upon polymer alignment. This unique feature is used to demonstrate circularly symmetric nanoantennas that provide different plasmonic resonances parallel and perpendicular to the alignment direction. The nanoantennas are further tuneable via the redox state of the polymer. Importantly, polymer alignment could blueshift the plasma wavelength and resonances by several hundreds of nanometers, forming a novel approach toward reaching the ultimate goal of redox-tunable conducting polymer nanoantennas for visible light. Traditional anisotropic nanoantennas have asymmetric shape. In this work, symmetry is instead broken by straining of a conducting polymer, leading to an in-plane anisotropic plasma frequency. This enables circularly symmetric nanoantennas with polarization-dependent localized surface plasmon resonances. The polarization dependence is consistent with inverse changes of the effective mass and mobility of thecharge carriers along different in-plane directions.image ; Funding Agencies|AForsk Foundation; Knut and Alice Wallenberg Foundation; Swedish Research Council [2020-00287, 2022-00211, 2019-04424, 2020-05218]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoeping University (Faculty Grant SFO-Mat-LiU) [2009 00971]; Swedens Innovation Agency (Vinnova grant) [2021-01668]

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • mobility
  • anisotropic
  • forming