People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chen, Qian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Alkali‐Ion‐Assisted Activation of ε‐VOPO<sub>4</sub> as a Cathode Material for Mg‐Ion Batteriescitations
- 2024Reactive Molecular Dynamics Simulation Study on Atomic-Scale Adhesive Wear Mechanisms of Single Crystalline Body-Centered Cubic Ironcitations
- 2023NbTe<sub>4</sub> Phase‐Change Material: Breaking the Phase‐Change Temperature Balance in 2D Van der Waals Transition‐Metal Binary Chalcogenidecitations
- 2022High efficiency semitransparent perovskite solar cells containing 2D nanopore arrays deposited in a single stepcitations
- 2022High efficiency semitransparent perovskite solar cells containing 2D nanopore arrays deposited in a single stepcitations
- 2021Improving the Efficiency, Stability, and Adhesion of Perovskite Solar Cells Using Nanogel Additive Engineeringcitations
- 2019Air-Stable Methylammonium Lead Iodide Perovskite Thin Films Fabricated via Aerosol-Assisted Chemical Vapor Deposition from a Pseudohalide Pb(SCN)2 Precursorcitations
- 2019Air-Stable Methylammonium Lead Iodide Perovskite Thin Films Fabricated via Aerosol-Assisted Chemical Vapor Deposition from a Pseudohalide Pb(SCN) 2 Precursorcitations
- 2018Using microgels to control the morphology and optoelectronic properties of hybrid organic-inorganic perovskite filmscitations
- 2012Electroforming process in metal-oxide-polymer resistive switching memories
Places of action
Organizations | Location | People |
---|
article
NbTe<sub>4</sub> Phase‐Change Material: Breaking the Phase‐Change Temperature Balance in 2D Van der Waals Transition‐Metal Binary Chalcogenide
Abstract
<jats:title>Abstract</jats:title><jats:p>2D van der Waals (vdW) transition metal di‐chalcogenides (TMDs) have garnered significant attention in the nonvolatile memory field for their tunable electrical properties, scalability, and potential for phase engineering. However, their complex switching mechanism and complicated fabrication methods pose challenges for mass production. Sputtering is a promising technique for large‐area 2D vdW TMD fabrication, but the high melting point (typically <jats:italic>T</jats:italic><jats:sub>m</jats:sub> > 1000 °C) of TMDs requires elevated temperatures for good crystallinity. This study focuses on the low‐<jats:italic>T</jats:italic><jats:sub>m</jats:sub> 2D vdW TM tetra‐chalcogenides and identifies NbTe<jats:sub>4</jats:sub> as a promising candidate with an ultra‐low <jats:italic>T</jats:italic><jats:sub>m</jats:sub> of around 447 °C (onset temperature). As‐grown NbTe<jats:sub>4</jats:sub> forms an amorphous phase upon deposition that can be crystallized by annealing at temperatures above 272 °C. The simultaneous presence of a low <jats:italic>T</jats:italic><jats:sub>m</jats:sub> and a high crystallization temperature <jats:italic>T</jats:italic><jats:sub>c</jats:sub> can resolve important issues facing current phase‐change memory compounds, such as high Reset energies and poor thermal stability of the amorphous phase. Therefore, NbTe<jats:sub>4</jats:sub> holds great promise as a potential solution to these issues.</jats:p>