Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chen, Qian

  • Google
  • 10
  • 58
  • 95

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Alkali‐Ion‐Assisted Activation of ε‐VOPO<sub>4</sub> as a Cathode Material for Mg‐Ion Batteries6citations
  • 2024Reactive Molecular Dynamics Simulation Study on Atomic-Scale Adhesive Wear Mechanisms of Single Crystalline Body-Centered Cubic Iron1citations
  • 2023NbTe<sub>4</sub> Phase‐Change Material: Breaking the Phase‐Change Temperature Balance in 2D Van der Waals Transition‐Metal Binary Chalcogenide21citations
  • 2022High efficiency semitransparent perovskite solar cells containing 2D nanopore arrays deposited in a single step11citations
  • 2022High efficiency semitransparent perovskite solar cells containing 2D nanopore arrays deposited in a single step11citations
  • 2021Improving the Efficiency, Stability, and Adhesion of Perovskite Solar Cells Using Nanogel Additive Engineering5citations
  • 2019Air-Stable Methylammonium Lead Iodide Perovskite Thin Films Fabricated via Aerosol-Assisted Chemical Vapor Deposition from a Pseudohalide Pb(SCN)2 Precursor15citations
  • 2019Air-Stable Methylammonium Lead Iodide Perovskite Thin Films Fabricated via Aerosol-Assisted Chemical Vapor Deposition from a Pseudohalide Pb(SCN) 2 Precursor15citations
  • 2018Using microgels to control the morphology and optoelectronic properties of hybrid organic-inorganic perovskite films10citations
  • 2012Electroforming process in metal-oxide-polymer resistive switching memoriescitations

Places of action

Chart of shared publication
Kim, Jiyoon
1 / 1 shared
Rutt, Ann
1 / 1 shared
Ceder, Gerbrand
1 / 9 shared
Persson, Kristin A.
1 / 6 shared
Hahn, Nathan T.
1 / 2 shared
Sari, Dogancan
1 / 1 shared
Asano, Yuta
1 / 1 shared
Ozawa, Nobuki
1 / 3 shared
Kawaura, Masayuki
1 / 1 shared
Kubo, Momoji
2 / 6 shared
Yokoi, Mizuho
1 / 1 shared
Tsuchiko, Masaki
1 / 1 shared
Fons, Paul
1 / 7 shared
Ando, Daisuke
1 / 5 shared
Hatayama, Shogo
1 / 2 shared
Kim, Mihyeon
1 / 1 shared
Wang, Yinli
1 / 2 shared
Shuang, Yi
1 / 2 shared
Sutou, Yuji
1 / 5 shared
Saito, Yuta
1 / 6 shared
Hill, Patrick
2 / 3 shared
Spencer, Ben Felix
3 / 14 shared
Wang, Xuelian
2 / 3 shared
Curry, Rj
1 / 12 shared
Altujjar, Amal
3 / 4 shared
Saunders, Brian R.
4 / 35 shared
Mokhtar, Muhamad Z.
2 / 2 shared
Thomas, Andrew G.
4 / 28 shared
Hodson, Nigel W.
2 / 2 shared
Jacobs, Janet
2 / 5 shared
Curry, Richard. J.
1 / 1 shared
Spencer, Ben F.
1 / 7 shared
Alkhudhari, Osama M.
1 / 2 shared
Wang, Ran
1 / 2 shared
Mokhtar, Muhamad Zulhasif
4 / 6 shared
Mironov, Aleksandr
1 / 2 shared
Alkhudhari, Osama
1 / 2 shared
Neilson, Joseph
1 / 2 shared
Saunders, Jennifer M.
1 / 3 shared
Walton, Alex
2 / 23 shared
Lewis, Dj
1 / 30 shared
Flavell, Wendy R.
1 / 16 shared
Obrien, Paul
1 / 23 shared
Compean Gonzalez, Claudia Lorena
1 / 2 shared
Obrien, Paul
1 / 42 shared
Ke, Jack Chun-Ren
1 / 2 shared
Flavell, Wendy
1 / 4 shared
Lewis, David
1 / 16 shared
Thomas, Andrew
1 / 13 shared
Spencer, Ben
1 / 10 shared
Dokkhan, Chotiros
1 / 1 shared
Hodson, Nigel
1 / 7 shared
Hamilton, Bruce
1 / 5 shared
Gomes, Henrique L.
1 / 5 shared
De Leeuw, Dago M.
1 / 12 shared
Kiazadeh, Asal
1 / 15 shared
Meskers, Stefan C. J.
1 / 29 shared
Rocha, Paulo R. F.
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2019
2018
2012

Co-Authors (by relevance)

  • Kim, Jiyoon
  • Rutt, Ann
  • Ceder, Gerbrand
  • Persson, Kristin A.
  • Hahn, Nathan T.
  • Sari, Dogancan
  • Asano, Yuta
  • Ozawa, Nobuki
  • Kawaura, Masayuki
  • Kubo, Momoji
  • Yokoi, Mizuho
  • Tsuchiko, Masaki
  • Fons, Paul
  • Ando, Daisuke
  • Hatayama, Shogo
  • Kim, Mihyeon
  • Wang, Yinli
  • Shuang, Yi
  • Sutou, Yuji
  • Saito, Yuta
  • Hill, Patrick
  • Spencer, Ben Felix
  • Wang, Xuelian
  • Curry, Rj
  • Altujjar, Amal
  • Saunders, Brian R.
  • Mokhtar, Muhamad Z.
  • Thomas, Andrew G.
  • Hodson, Nigel W.
  • Jacobs, Janet
  • Curry, Richard. J.
  • Spencer, Ben F.
  • Alkhudhari, Osama M.
  • Wang, Ran
  • Mokhtar, Muhamad Zulhasif
  • Mironov, Aleksandr
  • Alkhudhari, Osama
  • Neilson, Joseph
  • Saunders, Jennifer M.
  • Walton, Alex
  • Lewis, Dj
  • Flavell, Wendy R.
  • Obrien, Paul
  • Compean Gonzalez, Claudia Lorena
  • Obrien, Paul
  • Ke, Jack Chun-Ren
  • Flavell, Wendy
  • Lewis, David
  • Thomas, Andrew
  • Spencer, Ben
  • Dokkhan, Chotiros
  • Hodson, Nigel
  • Hamilton, Bruce
  • Gomes, Henrique L.
  • De Leeuw, Dago M.
  • Kiazadeh, Asal
  • Meskers, Stefan C. J.
  • Rocha, Paulo R. F.
OrganizationsLocationPeople

article

NbTe<sub>4</sub> Phase‐Change Material: Breaking the Phase‐Change Temperature Balance in 2D Van der Waals Transition‐Metal Binary Chalcogenide

  • Chen, Qian
  • Fons, Paul
  • Ando, Daisuke
  • Hatayama, Shogo
  • Kim, Mihyeon
  • Kubo, Momoji
  • Wang, Yinli
  • Shuang, Yi
  • Sutou, Yuji
  • Saito, Yuta
Abstract

<jats:title>Abstract</jats:title><jats:p>2D van der Waals (vdW) transition metal di‐chalcogenides (TMDs) have garnered significant attention in the nonvolatile memory field for their tunable electrical properties, scalability, and potential for phase engineering. However, their complex switching mechanism and complicated fabrication methods pose challenges for mass production. Sputtering is a promising technique for large‐area 2D vdW TMD fabrication, but the high melting point (typically <jats:italic>T</jats:italic><jats:sub>m</jats:sub> &gt; 1000 °C) of TMDs requires elevated temperatures for good crystallinity. This study focuses on the low‐<jats:italic>T</jats:italic><jats:sub>m</jats:sub> 2D vdW TM tetra‐chalcogenides and identifies NbTe<jats:sub>4</jats:sub> as a promising candidate with an ultra‐low <jats:italic>T</jats:italic><jats:sub>m</jats:sub> of around 447 °C (onset temperature). As‐grown NbTe<jats:sub>4</jats:sub> forms an amorphous phase upon deposition that can be crystallized by annealing at temperatures above 272 °C. The simultaneous presence of a low <jats:italic>T</jats:italic><jats:sub>m</jats:sub> and a high crystallization temperature <jats:italic>T</jats:italic><jats:sub>c</jats:sub> can resolve important issues facing current phase‐change memory compounds, such as high Reset energies and poor thermal stability of the amorphous phase. Therefore, NbTe<jats:sub>4</jats:sub> holds great promise as a potential solution to these issues.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • compound
  • amorphous
  • phase
  • annealing
  • crystallization
  • crystallinity
  • crystallization temperature