Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gao, Huimin

  • Google
  • 1
  • 8
  • 52

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Enhanced Nitrate‐to‐Ammonia Efficiency over Linear Assemblies of Copper‐Cobalt Nanophases Stabilized by Redox Polymers52citations

Places of action

Chart of shared publication
Schuhmann, Wolfgang
1 / 100 shared
Chandra, Shubhadeep
1 / 1 shared
Junqueira, João R. C.
1 / 3 shared
Varhade, Swapnil
1 / 3 shared
Dieckhöfer, Stefan
1 / 2 shared
He, Wenhui
1 / 1 shared
Seisel, Sabine
1 / 1 shared
Quast, Thomas
1 / 6 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Schuhmann, Wolfgang
  • Chandra, Shubhadeep
  • Junqueira, João R. C.
  • Varhade, Swapnil
  • Dieckhöfer, Stefan
  • He, Wenhui
  • Seisel, Sabine
  • Quast, Thomas
OrganizationsLocationPeople

article

Enhanced Nitrate‐to‐Ammonia Efficiency over Linear Assemblies of Copper‐Cobalt Nanophases Stabilized by Redox Polymers

  • Schuhmann, Wolfgang
  • Chandra, Shubhadeep
  • Junqueira, João R. C.
  • Varhade, Swapnil
  • Dieckhöfer, Stefan
  • Gao, Huimin
  • He, Wenhui
  • Seisel, Sabine
  • Quast, Thomas
Abstract

<jats:title>Abstract</jats:title><jats:p>Renewable electricity‐powered nitrate (NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>) reduction reaction (NO<jats:sub>3</jats:sub>RR) offers a net‐zero carbon route to the realization of high ammonia (NH<jats:sub>3</jats:sub>) productivity. However, this route suffers from low energy efficiency (EE, with a half‐cell EE commonly &lt;36%), since high overpotentials are required to overcome the weak NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> binding affinity and sluggish NO<jats:sub>3</jats:sub>RR kinetics. To alleviate this, a rational catalyst design strategy that involves the linear assembly of sub‐5 nm Cu/Co nanophases into sub‐20 nm thick nanoribbons is suggested. The theoretical and experimental studies show that the Cu‐Co nanoribbons, similar to enzymes, enable strong NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> adsorption and rapid tandem catalysis of NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> to NH<jats:sub>3</jats:sub>, owing to their richly exposed binary phase boundaries and adjacent Cu‐Co sites at sub‐5 nm distance. In situ Raman spectroscopy further reveals that at low applied overpotentials, the Cu/Co nanophases are rapidly activated and subsequently stabilized by a specifically designed redox polymer that in situ scavenges intermediately formed highly oxidative nitrogen dioxide (NO<jats:sub>2</jats:sub>). As a result, a stable NO<jats:sub>3</jats:sub>RR with a current density of ≈450 mA cm<jats:sup>−2</jats:sup> is achieved, a Faradaic efficiency of &gt;97% for the formation of NH<jats:sub>3</jats:sub>, and an unprecedented half‐cell EE of ≈42%.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • polymer
  • Carbon
  • phase
  • Nitrogen
  • copper
  • cobalt
  • current density
  • Raman spectroscopy