Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wilson, Mark W. B.

  • Google
  • 1
  • 17
  • 45

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Sequential Co‐Passivation in InAs Colloidal Quantum Dot Solids Enables Efficient Near‐Infrared Photodetectors45citations

Places of action

Chart of shared publication
Sagar, Laxmi Kishore
1 / 2 shared
Anwar, Husna
1 / 1 shared
Choi, Minjae
1 / 1 shared
Najarian, Amin Morteza
1 / 2 shared
Hasham, Minhal
1 / 1 shared
Hassan, Yasser
1 / 2 shared
Biondi, Margherita
1 / 2 shared
Arquer, F. Pelayo García De
1 / 4 shared
Grater, Luke
1 / 2 shared
Bertens, Koen
1 / 2 shared
Hoogland, Sjoerd
1 / 9 shared
Zhang, Yangning
1 / 4 shared
Liu, Yanjiang
1 / 1 shared
Pina, Joao M.
1 / 1 shared
Xu, Jian
1 / 7 shared
Imran, Muhammad
1 / 60 shared
Atan, Ozan
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Sagar, Laxmi Kishore
  • Anwar, Husna
  • Choi, Minjae
  • Najarian, Amin Morteza
  • Hasham, Minhal
  • Hassan, Yasser
  • Biondi, Margherita
  • Arquer, F. Pelayo García De
  • Grater, Luke
  • Bertens, Koen
  • Hoogland, Sjoerd
  • Zhang, Yangning
  • Liu, Yanjiang
  • Pina, Joao M.
  • Xu, Jian
  • Imran, Muhammad
  • Atan, Ozan
OrganizationsLocationPeople

article

Sequential Co‐Passivation in InAs Colloidal Quantum Dot Solids Enables Efficient Near‐Infrared Photodetectors

  • Sagar, Laxmi Kishore
  • Anwar, Husna
  • Choi, Minjae
  • Najarian, Amin Morteza
  • Hasham, Minhal
  • Hassan, Yasser
  • Wilson, Mark W. B.
  • Biondi, Margherita
  • Arquer, F. Pelayo García De
  • Grater, Luke
  • Bertens, Koen
  • Hoogland, Sjoerd
  • Zhang, Yangning
  • Liu, Yanjiang
  • Pina, Joao M.
  • Xu, Jian
  • Imran, Muhammad
  • Atan, Ozan
Abstract

<jats:title>Abstract</jats:title><jats:p>III‐V colloidal quantum dots (CQDs) are promising materials for optoelectronic applications, for they avoid heavy metals while achieving absorption spanning the visible to the infrared (IR). However, the covalent nature of III‐V CQDs requires the development of new passivation strategies to fabricate conductive CQD solids for optoelectronics: this work shows herein that ligand exchanges, previously developed in II‐VI and IV‐VI quantum dots and employing a single ligand, do not fully passivate CQDs, and that this curtails device efficiency. Guided by density functional theory (DFT) simulations, this work develops a co‐passivation strategy to fabricate indium arsenide CQD photodetectors, an approach that employs the combination of X‐type methyl ammonium acetate (MaAc) and Z‐type ligands InBr<jats:sub>3</jats:sub>. This approach maintains charge carrier mobility and improves passivation, seen in a 25% decrease in Stokes shift, a fourfold reduction in the rate of first‐exciton absorption linewidth broadening over time‐under‐stress, and leads to a doubling in photoluminescence (PL) lifetime. The resulting devices show 37% external quantum efficiency (EQE) at 950 nm, the highest value reported for InAs CQD photodetectors.</jats:p>

Topics
  • density
  • photoluminescence
  • mobility
  • theory
  • simulation
  • density functional theory
  • quantum dot
  • Indium