Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gao, Xiaoxin

  • Google
  • 1
  • 21
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Foldable Hole‐Transporting Materials for Merging Electronic States between Defective and Perfect Perovskite Sites28citations

Places of action

Chart of shared publication
Nazeeruddin, Mohammad Khaja
1 / 15 shared
Getautis, Vytautas
1 / 8 shared
Daskeviciene, Maryte
1 / 2 shared
Jankauskas, Vygintas
1 / 4 shared
Luizys, Povilas
1 / 1 shared
Xiao, Chuanxiao
1 / 2 shared
Kantminiene, Kristina
1 / 1 shared
Asiri, Abdullah M.
1 / 13 shared
Brooks, Keith Gregory
1 / 1 shared
Alwani, Imanah Rafieh
1 / 1 shared
Kreiza, Gediminas
1 / 3 shared
Rakstys, Kasparas
1 / 3 shared
Kanda, Hiroyuki
1 / 4 shared
Xia, Jianxing
1 / 3 shared
Zhang, Yi
1 / 17 shared
Dyson, Paul J.
1 / 6 shared
Shao, Guang
1 / 1 shared
Slonopas, Andre
1 / 2 shared
Zou, Jihua
1 / 1 shared
Qiu, Zeliang
1 / 1 shared
Hu, Ruiyuan
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Nazeeruddin, Mohammad Khaja
  • Getautis, Vytautas
  • Daskeviciene, Maryte
  • Jankauskas, Vygintas
  • Luizys, Povilas
  • Xiao, Chuanxiao
  • Kantminiene, Kristina
  • Asiri, Abdullah M.
  • Brooks, Keith Gregory
  • Alwani, Imanah Rafieh
  • Kreiza, Gediminas
  • Rakstys, Kasparas
  • Kanda, Hiroyuki
  • Xia, Jianxing
  • Zhang, Yi
  • Dyson, Paul J.
  • Shao, Guang
  • Slonopas, Andre
  • Zou, Jihua
  • Qiu, Zeliang
  • Hu, Ruiyuan
OrganizationsLocationPeople

article

Foldable Hole‐Transporting Materials for Merging Electronic States between Defective and Perfect Perovskite Sites

  • Nazeeruddin, Mohammad Khaja
  • Getautis, Vytautas
  • Daskeviciene, Maryte
  • Jankauskas, Vygintas
  • Luizys, Povilas
  • Xiao, Chuanxiao
  • Kantminiene, Kristina
  • Asiri, Abdullah M.
  • Brooks, Keith Gregory
  • Gao, Xiaoxin
  • Alwani, Imanah Rafieh
  • Kreiza, Gediminas
  • Rakstys, Kasparas
  • Kanda, Hiroyuki
  • Xia, Jianxing
  • Zhang, Yi
  • Dyson, Paul J.
  • Shao, Guang
  • Slonopas, Andre
  • Zou, Jihua
  • Qiu, Zeliang
  • Hu, Ruiyuan
Abstract

<jats:title>Abstract</jats:title><jats:p>Defective and perfect sites naturally exist within electronic semiconductors, and considerable efforts to reduce defects to improve the performance of electronic devices, especially in hybrid organic–inorganic perovskites (ABX<jats:sub>3</jats:sub>), are undertaken. Herein, foldable hole‐transporting materials (HTMs) are developed, and they extend the wavefunctions of A‐site cations of perovskite, which, as hybridized electronic states, link the trap states (defective site) and valence band edge (perfect site) between the naturally defective and perfect sites of the perovskite surface, finally converting the discrete trap states of the perovskite as the continuous valence band to reduce trap recombination. Tailoring the foldability of the HTMs tunes the wavefunctions between defective and perfect surface sites, allowing the power conversion efficiency of a small cell to reach 23.22% and that of a mini‐module (6.5 × 7 cm, active area = 30.24 cm<jats:sup>2</jats:sup>) to reach as high as 21.71% with a fill factor of 81%, the highest value reported for non‐spiro‐OMeTAD‐based perovskite solar modules.</jats:p>

Topics
  • perovskite
  • surface
  • semiconductor
  • defect
  • power conversion efficiency