People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kumar, Pawan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Investigation of AA6063-based metal–matrix composites reinforced with TiO2 dispersoids through digitally assisted techniques for mechanical, tribological, and microstructural characterizationscitations
- 2023Cooperative Copper Single Atom Catalyst in Two‐dimensional Carbon Nitride for Enhanced CO<sub>2</sub> Electrolysis to Methanecitations
- 2023Nanoengineered Au–carbon nitride interfaces enhance photocatalytic pure water splitting to hydrogencitations
- 2022Estimating spatial distribution of oxygen and hypoxia in tumor microenvironment: a mechanistic approach
- 2022Revealing the Variation of Photodetectivity in MAPbI3 and MAPb(I0.88Br0.12)3 Single Crystal Based Photodetectors Under Electrical Poling-Induced Polarizationcitations
- 2022Imaging Topological Defects in a Noncollinear Antiferromagnetcitations
- 2022Nanocrystalline cellulose derived from spruce woodcitations
- 2022Modeling of Electric Discharge Wire Cut of Aviation Grade Alloy Using Fuzzy Techniquecitations
- 2022Future of Water/Wastewater Treatment and Management by Industry 4.0 Integrated Nanocomposite Manufacturingcitations
- 2021Nano-vault architecture mitigates stress in silicon-based anodes for lithium-ion batteriescitations
- 2021Effect of Bromine Doping on Charge Transfer, Ion Migration and Stability of the Single Crystalline MAPb(BrxI1−x)3 Photodetectorcitations
- 2021Water-splitting photoelectrodes consisting of heterojunctions of carbon nitride with a p-type low bandgap double perovskite oxidecitations
- 2020Direct measurement of the thermoelectric properties of electrochemically deposited Bi2Te3 thin filmscitations
- 2020Interpretation of Resistance, Capacitance, Defect Density, and Activation Energy Levels in Single-Crystalline MAPbI3citations
- 2020Evidence of magneto-electric coupling and electrical study of CFO modified BNT/BT compositescitations
- 2018High-performance field emission device utilizing vertically aligned carbon nanotubes-based pillar architecturescitations
- 2013Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite
Places of action
Organizations | Location | People |
---|
article
Cooperative Copper Single Atom Catalyst in Two‐dimensional Carbon Nitride for Enhanced CO<sub>2</sub> Electrolysis to Methane
Abstract
<jats:title>Abstract</jats:title><jats:p>Renewable electricity powered carbon dioxide (CO<jats:sub>2</jats:sub>) reduction (eCO<jats:sub>2</jats:sub>R) to high‐value fuels like methane (CH<jats:sub>4</jats:sub>) holds the potential to close the carbon cycle at meaningful scales. However, this kinetically staggered 8‐electron multistep reduction still suffers from inadequate catalytic efficiency and current density. Atomic Cu‐structures can boost eCO<jats:sub>2</jats:sub>R‐to‐CH<jats:sub>4</jats:sub> selectivity due to enhanced intermediate binding energies (BEs) resulting from favorably shifted d‐band centers. Herein, we exploit two‐dimensional carbon nitride (CN) matrices, viz. Na‐polyheptazine (PHI) and Li‐polytriazine imides (PTI), to host Cu‐N<jats:sub>2</jats:sub> type single atom sites with high density (∼1.5 at%), via a facile metal ion exchange process. Optimized Cu loading in nanocrystalline Cu‐PTI maximizes eCO<jats:sub>2</jats:sub>R‐to‐CH<jats:sub>4</jats:sub> performance with Faradaic efficiency (FE<jats:sub>CH4</jats:sub>) of ≈68% and a high partial current density of 348 mA cm<jats:sup>−2</jats:sup> at a low potential of ‐0.84 V versus RHE, surpassing the state‐of‐the‐art catalysts. Multi‐Cu substituted N‐appended nanopores in the CN frameworks yield thermodynamically stable quasi‐dual/triple sites with large interatomic distances dictated by the pore dimensions. First‐principles calculations elucidate the relative Cu‐CN cooperative effects between the two matrices and how the Cu‐Cu distance and local environment dictate the adsorbate BEs, density of states, and CO<jats:sub>2</jats:sub>‐to‐CH<jats:sub>4</jats:sub> energy profile landscape. The 9N pores in Cu‐PTI yield cooperative Cu‐Cu sites that synergistically enhance the kinetics of the rate‐limiting steps in the eCO<jats:sub>2</jats:sub>R‐to‐CH<jats:sub>4</jats:sub> pathway.</jats:p><jats:p>This article is protected by copyright. All rights reserved</jats:p>