Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Berkels, Benjamin

  • Google
  • 9
  • 65
  • 167

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024The effect of Laves phases and nano-precipitates on the electrochemical corrosion resistance of Mg-Al-Ca alloys under alkaline conditions4citations
  • 2023A machine learning framework for quantifying chemical segregation and microstructural features in atom probe tomography datacitations
  • 2023Laves phases in Mg-Al-Ca alloys and their effect on mechanical propertiescitations
  • 2023Tailoring the Plasticity of Topologically Close‐packed Phases via the Crystals’ Fundamental Building Blocks16citations
  • 2023Constructing phase diagrams for defects by correlated atomic-scale characterization1citations
  • 2023Tailoring the Plasticity of Topologically Close‐Packed Phases via the Crystals’ Fundamental Building Blocks16citations
  • 2023A Machine Learning Framework for Quantifying Chemical Segregation and Microstructural Features in Atom Probe Tomography Data5citations
  • 2020Multi-modal and multi-scale non-local means method to analyze spectroscopic datasets7citations
  • 2018Atomic-Scale Insights into the Oxidation of Aluminum118citations

Places of action

Chart of shared publication
Felten, Markus
2 / 5 shared
Zhang, Siyuan
5 / 25 shared
Greving, Imke
1 / 10 shared
Lipińska-Chwałek, Marta
1 / 6 shared
Sefa, Sandra
1 / 2 shared
Hans, Marcus
1 / 38 shared
Chaineux, Veronika Franziska
1 / 1 shared
Zander, Brita Daniela
1 / 2 shared
Scheu, Christina
5 / 49 shared
Flenner, Silja
1 / 5 shared
Hickel, Tilmann
2 / 27 shared
Spille, Joshua
1 / 2 shared
Mayer, Joachim
2 / 30 shared
Tehranchi, Ali
1 / 6 shared
Freysoldt, Christoph
2 / 5 shared
Katnagallu, Shyam
2 / 9 shared
Saxena, Alaukik
1 / 2 shared
Neugebauer, Jörg
3 / 35 shared
Gault, Baptiste
2 / 45 shared
Kusampudi, Navyanth
1 / 4 shared
Gutfleisch, Oliver
2 / 54 shared
Polin, Nikita
2 / 2 shared
Molina-Luna, Leopoldo
2 / 30 shared
Abdellaoui, Lamya
1 / 4 shared
Zubair, Muhammd
1 / 1 shared
Villoro, Ruben Bueno
1 / 3 shared
Vega-Paredes, Miquel
1 / 4 shared
Korte-Kerzel, Sandra
2 / 20 shared
Lipinska-Chwalek, Marta
1 / 4 shared
Hallstedt, Bengt
1 / 7 shared
Zander, Daniela
1 / 7 shared
Springer, Hauke
1 / 25 shared
Ayeb, Nadia
1 / 1 shared
Kortekerzel, Sandra
1 / 1 shared
Pizzagalli, Laurent
2 / 10 shared
Luo, Wei
2 / 15 shared
Stein, Frank
2 / 11 shared
Alhassan, Amel
2 / 2 shared
Sun, Peiling
2 / 2 shared
Zhou, Xuyang
3 / 12 shared
Guénolé, Julien
2 / 22 shared
Meingast, Arno
2 / 3 shared
Xie, Zhuocheng
2 / 11 shared
Raabe, Dierk
1 / 523 shared
Ahmad, Saba
1 / 2 shared
Mathews, Prince
1 / 1 shared
Schneider, Jochen M.
1 / 61 shared
Dehm, Gerhard
1 / 58 shared
Alhassan, Amel Shamseldeen Ali
1 / 1 shared
Keuter, Philipp
1 / 6 shared
Navyanth, Kusampudi
1 / 1 shared
Macarthur, Katherine E.
1 / 2 shared
Duchamp, Martial
1 / 14 shared
Tileli, Vasiliki
1 / 5 shared
Mevenkamp, Niklas
1 / 1 shared
Allen, Leslie J.
1 / 4 shared
Ebert, Philipp
1 / 5 shared
Hashimoto, Teruo
1 / 25 shared
Haigh, Sj
1 / 63 shared
Burnett, Tl
1 / 28 shared
Rooney, Aidan P.
1 / 4 shared
Zakharov, Dmitri N.
1 / 1 shared
Thompson, George
1 / 27 shared
Stach, Eric A.
1 / 3 shared
Nguyen, Lan
1 / 1 shared
Chart of publication period
2024
2023
2020
2018

Co-Authors (by relevance)

  • Felten, Markus
  • Zhang, Siyuan
  • Greving, Imke
  • Lipińska-Chwałek, Marta
  • Sefa, Sandra
  • Hans, Marcus
  • Chaineux, Veronika Franziska
  • Zander, Brita Daniela
  • Scheu, Christina
  • Flenner, Silja
  • Hickel, Tilmann
  • Spille, Joshua
  • Mayer, Joachim
  • Tehranchi, Ali
  • Freysoldt, Christoph
  • Katnagallu, Shyam
  • Saxena, Alaukik
  • Neugebauer, Jörg
  • Gault, Baptiste
  • Kusampudi, Navyanth
  • Gutfleisch, Oliver
  • Polin, Nikita
  • Molina-Luna, Leopoldo
  • Abdellaoui, Lamya
  • Zubair, Muhammd
  • Villoro, Ruben Bueno
  • Vega-Paredes, Miquel
  • Korte-Kerzel, Sandra
  • Lipinska-Chwalek, Marta
  • Hallstedt, Bengt
  • Zander, Daniela
  • Springer, Hauke
  • Ayeb, Nadia
  • Kortekerzel, Sandra
  • Pizzagalli, Laurent
  • Luo, Wei
  • Stein, Frank
  • Alhassan, Amel
  • Sun, Peiling
  • Zhou, Xuyang
  • Guénolé, Julien
  • Meingast, Arno
  • Xie, Zhuocheng
  • Raabe, Dierk
  • Ahmad, Saba
  • Mathews, Prince
  • Schneider, Jochen M.
  • Dehm, Gerhard
  • Alhassan, Amel Shamseldeen Ali
  • Keuter, Philipp
  • Navyanth, Kusampudi
  • Macarthur, Katherine E.
  • Duchamp, Martial
  • Tileli, Vasiliki
  • Mevenkamp, Niklas
  • Allen, Leslie J.
  • Ebert, Philipp
  • Hashimoto, Teruo
  • Haigh, Sj
  • Burnett, Tl
  • Rooney, Aidan P.
  • Zakharov, Dmitri N.
  • Thompson, George
  • Stach, Eric A.
  • Nguyen, Lan
OrganizationsLocationPeople

article

Tailoring the Plasticity of Topologically Close‐Packed Phases via the Crystals’ Fundamental Building Blocks

  • Pizzagalli, Laurent
  • Zhang, Siyuan
  • Luo, Wei
  • Stein, Frank
  • Scheu, Christina
  • Alhassan, Amel
  • Sun, Peiling
  • Korte-Kerzel, Sandra
  • Zhou, Xuyang
  • Guénolé, Julien
  • Meingast, Arno
  • Xie, Zhuocheng
  • Berkels, Benjamin
Abstract

<jats:title>Abstract</jats:title><jats:p>Brittle topologically close‐packed precipitates form in many advanced alloys. Due to their complex structures, little is known about their plasticity. Here, a strategy is presented to understand and tailor the deformability of these complex phases by considering the Nb–Co µ‐phase as an archetypal material. The plasticity of the Nb–Co µ‐phase is controlled by the Laves phase building block that forms parts of its unit cell. It is found that between the bulk C15–NbCo<jats:sub>2</jats:sub> Laves and Nb–Co µ‐phases, the interplanar spacing and local stiffness of the Laves phase building block change, leading to a strong reduction in hardness and stiffness, as well as a transition from synchroshear to crystallographic slip. Furthermore, as the composition changes from Nb<jats:sub>6</jats:sub>Co<jats:sub>7</jats:sub> to Nb<jats:sub>7</jats:sub>Co<jats:sub>6</jats:sub>, the Co atoms in the triple layer are substituted such that the triple layer of the Laves phase building block becomes a slab of pure Nb, resulting in inhomogeneous changes in elasticity and a transition from crystallographic slip to a glide‐and‐shuffle mechanism. These findings open opportunities to purposefully tailor the plasticity of these topologically close‐packed phases in the bulk by manipulating the interplanar spacing and local shear modulus of the fundamental crystal building blocks at the atomic scale.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • hardness
  • precipitate
  • elasticity
  • plasticity