People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liebscher, Christian
Ruhr University Bochum
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Determination of five-parameter grain boundary characteristics in nanocrystalline Ni-W by scanning precession electron diffraction tomographycitations
- 2023Interstitial Segregation has the Potential to Mitigate Liquid Metal Embrittlement in Ironcitations
- 2021Structure and hardness of in situ synthesized nano-oxide strengthened CoCrFeNi high entropy alloy thin filmscitations
- 2021Influence of substrates and e-beam evaporation parameters on the microstructure of nanocrystalline and epitaxially grown Ti thin filmscitations
- 2019Ti and its alloys as examples of cryogenic focused ion beam milling of environmentally-sensitive materialscitations
Places of action
Organizations | Location | People |
---|
article
Interstitial Segregation has the Potential to Mitigate Liquid Metal Embrittlement in Iron
Abstract
<jats:title>Abstract</jats:title><jats:p>The embrittlement of metallic alloys by liquid metals leads to catastrophic material failure and severely impacts their structural integrity. The weakening of grain boundaries (GBs) by the ingress of liquid metal and preceding segregation in the solid are thought to promote early fracture. However, the potential of balancing between the segregation of cohesion‐enhancing interstitial solutes and embrittling elements inducing GB de‐cohesion is not understood. Here, the mechanisms of how boron segregation mitigates the detrimental effects of the prime embrittler, zinc, in a Σ5 [001] tilt GB in α‐Fe (4 at.% Al) is unveiled. Zinc forms nanoscale segregation patterns inducing structurally and compositionally complex GB states. Ab initio simulations reveal that boron hinders zinc segregation and compensates for the zinc‐induced loss in GB cohesion. The work sheds new light on how interstitial solutes intimately modify GBs, thereby opening pathways to use them as dopants for preventing disastrous material failure.</jats:p>