People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bristow, Helen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Moisture‐Resilient Perovskite Solar Cells for Enhanced Stabilitycitations
- 2023Semitransparent Organic Photovoltaics Utilizing Intrinsic Charge Generation in Non‐Fullerene Acceptorscitations
- 2023Efficient and reliable encapsulation for perovskite/silicon tandem solar modulescitations
- 2022Infrared Organic Photodetectors Employing Ultralow Bandgap Polymer and Non‐Fullerene Acceptors for Biometric Monitoringcitations
- 2022Synthetic nuances to maximize n-type organic electrochemical transistor and thermoelectric performance in fused lactam polymerscitations
- 2022Synthetic Nuances to Maximize n-Type Organic Electrochemical Transistor and Thermoelectric Performance in Fused Lactam Polymers.citations
- 2021Ternary organic photodetectors based on pseudo-binaries nonfullerene-based acceptorscitations
- 2020The effect of aromatic ring size in electron deficient semiconducting polymers for n-type organic thermoelectricscitations
Places of action
Organizations | Location | People |
---|
article
Moisture‐Resilient Perovskite Solar Cells for Enhanced Stability
Abstract
<jats:title>Abstract</jats:title><jats:p>With the rapid rise in device performance of perovskite solar cells (PSCs), overcoming instabilities under outdoor operating conditions has become the most crucial obstacle toward their commercialization. Among stressors such as light, heat, voltage bias, and moisture, the latter is arguably the most critical, as it can decompose metal‐halide perovskite (MHP) photoactive absorbers instantly through its hygroscopic components (organic cations and metal halides). In addition, most charge transport layers (CTLs) commonly employed in PSCs also degrade in the presence of water. Furthermore, photovoltaic module fabrication encompasses several steps, such as laser processing, subcell interconnection, and encapsulation, during which the device layers are exposed to the ambient atmosphere. Therefore, as a first step toward long‐term stable perovskite photovoltaics, it is vital to engineer device materials toward maximizing moisture resilience, which can be accomplished by passivating the bulk of the MHP film, introducing passivation interlayers at the top contact, exploiting hydrophobic CTLs, and encapsulating finished devices with hydrophobic barrier layers, without jeopardizing device performance. Here, existing strategies for enhancing the performance stability of PSCs are reviewed and pathways toward moisture‐resilient commercial perovskite devices are formulated.</jats:p>