Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Utomo, Drajad Satrio

  • Google
  • 1
  • 5
  • 69

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Moisture‐Resilient Perovskite Solar Cells for Enhanced Stability69citations

Places of action

Chart of shared publication
Subbiah, Anand S.
1 / 1 shared
Zhumagali, Shynggys
1 / 1 shared
Pininti, Anil Reddy
1 / 1 shared
Bristow, Helen
1 / 8 shared
Yazmaciyan, Aren
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Subbiah, Anand S.
  • Zhumagali, Shynggys
  • Pininti, Anil Reddy
  • Bristow, Helen
  • Yazmaciyan, Aren
OrganizationsLocationPeople

article

Moisture‐Resilient Perovskite Solar Cells for Enhanced Stability

  • Subbiah, Anand S.
  • Zhumagali, Shynggys
  • Pininti, Anil Reddy
  • Utomo, Drajad Satrio
  • Bristow, Helen
  • Yazmaciyan, Aren
Abstract

<jats:title>Abstract</jats:title><jats:p>With the rapid rise in device performance of perovskite solar cells (PSCs), overcoming instabilities under outdoor operating conditions has become the most crucial obstacle toward their commercialization. Among stressors such as light, heat, voltage bias, and moisture, the latter is arguably the most critical, as it can decompose metal‐halide perovskite (MHP) photoactive absorbers instantly through its hygroscopic components (organic cations and metal halides). In addition, most charge transport layers (CTLs) commonly employed in PSCs also degrade in the presence of water. Furthermore, photovoltaic module fabrication encompasses several steps, such as laser processing, subcell interconnection, and encapsulation, during which the device layers are exposed to the ambient atmosphere. Therefore, as a first step toward long‐term stable perovskite photovoltaics, it is vital to engineer device materials toward maximizing moisture resilience, which can be accomplished by passivating the bulk of the MHP film, introducing passivation interlayers at the top contact, exploiting hydrophobic CTLs, and encapsulating finished devices with hydrophobic barrier layers, without jeopardizing device performance. Here, existing strategies for enhancing the performance stability of PSCs are reviewed and pathways toward moisture‐resilient commercial perovskite devices are formulated.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy