Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Prine, Nathaniel

  • Google
  • 2
  • 8
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Multimorphic Materials: Spatially Tailoring Mechanical Properties via Selective Initiation of Interpenetrating Polymer Networks24citations
  • 2023Understanding and controlling the depth sensitivity of scanning probe based infrared imaging and nanospectroscopy for buried polymeric structures1citations

Places of action

Chart of shared publication
Allen, Marshall
1 / 1 shared
Lien, Hsuming
1 / 1 shared
Gu, Xiaodan
1 / 5 shared
Burns, Carter
1 / 1 shared
Rylski, Adrian K.
1 / 2 shared
Freeman, Benny D.
1 / 3 shared
Mangolini, Filippo
1 / 2 shared
Cardinal, Camille
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Allen, Marshall
  • Lien, Hsuming
  • Gu, Xiaodan
  • Burns, Carter
  • Rylski, Adrian K.
  • Freeman, Benny D.
  • Mangolini, Filippo
  • Cardinal, Camille
OrganizationsLocationPeople

article

Multimorphic Materials: Spatially Tailoring Mechanical Properties via Selective Initiation of Interpenetrating Polymer Networks

  • Allen, Marshall
  • Lien, Hsuming
  • Prine, Nathaniel
  • Gu, Xiaodan
  • Burns, Carter
  • Rylski, Adrian K.
  • Freeman, Benny D.
  • Mangolini, Filippo
Abstract

<jats:title>Abstract</jats:title><jats:p>Access to multimaterial polymers with spatially localized properties and robust interfaces is anticipated to enable new capabilities in soft robotics, such as smooth actuation for advanced medical and manufacturing technologies. Here, orthogonal initiation is used to create interpenetrating polymer networks (IPNs) with spatial control over morphology and mechanical properties. Base catalyzes the formation of a stiff and strong polyurethane, while blue LEDs initiate the formation of a soft and elastic polyacrylate. IPN morphology is controlled by when the LED is turned “on”, with large phase separation occurring for short time delays (≈1–2 min) and a mixed morphology for longer time delays (&gt;5 min), which is supported by dynamic mechanical analysis, small angle X‐ray scattering, and atomic force microscopy. Through tailoring morphology, tensile moduli and fracture toughness can be tuned across ≈1–2 orders of magnitude. Moreover, a simple spring model is used to explain the observed mechanical behavior. Photopatterning produces “multimorphic” materials, where morphology is spatially localized with fine precision (&lt;100 µm), while maintaining a uniform chemical composition throughout to mitigate interfacial failure. As a final demonstration, the fabrication of hinges represents a possible use case for multimorphic materials in soft robotics.</jats:p>

Topics
  • impedance spectroscopy
  • morphology
  • polymer
  • phase
  • atomic force microscopy
  • chemical composition
  • interfacial
  • fracture toughness
  • dynamic mechanical analysis